## Groups and Representations

## Homework Assignment 7 (due on 7 December 2022)

## Problem 24

$V=\mathbb{C}^{2}$ carries the 2-dimensional irreducible representation of $D_{3} \cong S_{3}$ (cf. Section 2.4.1). On $W=V \otimes V$ we consider the corresponding product representation. Decompose $W$ into irreducible invariant subspaces by applying the generalised projection operators, and determine the Clebsch-Gordan coefficients.

## Problem 25

Let $V$ be a vector space and $A: V \rightarrow V$ a linear map. Show that if $A$ is nilpotent (i.e. if for some $n \in \mathbb{N}$ we have $\left.A^{n} v=0 \forall v \in V\right)$ then $\operatorname{tr} A=0$.

Problem 26
For $A \in \mathbb{C}^{n \times n}$ the matrix exponential is defined as

$$
\mathrm{e}^{A}=\exp (A)=\sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!}
$$

Prove:
a) The series converges absolutely and uniformly.

Hint: On $\mathbb{C}^{n \times n}$ use the operator norm

$$
\|A\|=\sup _{v \in \mathbb{C}^{n} \backslash\{0\}} \frac{|A v|}{|v|}
$$

for which we have $\|A B\| \leq\|A\|\|B\|$.
b) For $T \in \mathrm{GL}(n)$ we have $\mathrm{e}^{T A T^{-1}}=T \mathrm{e}^{A} T^{-1}$.
c) $\mathrm{e}^{t A}$ is the unique solution of the initial value problem $\dot{X}(t)=A X(t), X(0)=\mathbb{1}$.
d) For $t, s \in \mathbb{C}$ we have $\mathrm{e}^{(t+s) A}=\mathrm{e}^{t A} \mathrm{e}^{s A}$.
e) $\left(\mathrm{e}^{A}\right)^{\dagger}=\mathrm{e}^{\left(A^{\dagger}\right)}$.
f) $\operatorname{det} e^{A}=e^{\operatorname{tr} A}$.

## Problem 27

We can also write elements of the $\mathcal{A}\left(S_{n}\right)$ in birdtrack notation. In particular, we denote symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

$$
\frac{1}{n!} s=\frac{1}{n!} \sum_{p \in S_{n}} p=\bar{\square} \quad \text { and } \quad \frac{1}{n!} a=\frac{1}{n!} \sum_{p \in S_{n}} \operatorname{sgn}(p) p=\bar{\square} .
$$

Note that we include a factor of $\frac{1}{n!}$ in the definition of bars over $n$ lines. For instance,

$$
\begin{align*}
& \square \square=\frac{1}{2}(\square+>) \text { and } \\
& \square=\frac{1}{3!}(\bar{\square}-\bar{x}-\bar{x}+\mathcal{X}+ \tag{*}
\end{align*}
$$

Notice that in birdtrack notation the sign of a permutation, $(-1)^{K}$, is determined by the number $K$ of line crossings; if more than two lines cross in a point, one should slightly perturb the diagram before counting, e.g. $\nsucc \rightsquigarrow \neq(K=3)$.
a) Expand च and च— as in (*).

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of lines, e.g.

$$
\begin{aligned}
& \bar{\square}=\frac{1}{2}(\bar{\square}+\cdots) \text { or } \\
& \bar{\infty}=\frac{1}{2}(\square)=\frac{1}{2}(\square-\infty)
\end{aligned}
$$

It follows directly from the definition of $S$ and $A$ that when intertwining any two lines $S$ remains invariant and $A$ changes by a factor of $(-1)$, i.e.

b) Explain why this implies that whenever two (or more) lines connect a symmetriser to an anti-symmetrizer the whole expression vanishes, e.g.


Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on the r.h.s. of
we have sorted the terms according to where the last line is mapped - to the $n$ th, to the $(n-1)$ th, $\ldots$, to the first line line. Multiplying with from the left and disentangling lines we obtain the compact relation

$$
\bar{\square}=\frac{1}{n}\left(\frac{-\pi}{\vdots}+(n-1) \underset{\square}{\square}\right)
$$

c) Derive the corresponding recursion relation for anti-symmetrisers.

