Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler & Saradha Senthil-Velu

Groups and Representations

Homework Assignment 7 (due on 7 December 2022)

Problem 24

 $V = \mathbb{C}^2$ carries the 2-dimensional irreducible representation of $D_3 \cong S_3$ (cf. Section 2.4.1). On $W = V \otimes V$ we consider the corresponding product representation. Decompose W into irreducible invariant subspaces by applying the generalised projection operators, and determine the Clebsch-Gordan coefficients.

Problem 25

Let V be a vector space and $A: V \to V$ a linear map. Show that if A is nilpotent (i.e. if for some $n \in \mathbb{N}$ we have $A^n v = 0 \forall v \in V$) then tr A = 0.

Problem 26

For $A \in \mathbb{C}^{n \times n}$ the matrix exponential is defined as

$$e^{A} = \exp(A) = \sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!}.$$

Prove:

a) The series converges absolutely and uniformly. HINT: On $\mathbb{C}^{n \times n}$ use the operator norm

$$||A|| = \sup_{v \in \mathbb{C}^n \setminus \{0\}} \frac{|Av|}{|v|},$$

for which we have $||AB|| \leq ||A|| ||B||$.

- b) For $T \in \operatorname{GL}(n)$ we have $e^{TAT^{-1}} = Te^{A}T^{-1}$.
- c) e^{tA} is the unique solution of the initial value problem $\dot{X}(t) = AX(t), X(0) = \mathbb{1}$.
- d) For $t, s \in \mathbb{C}$ we have $e^{(t+s)A} = e^{tA}e^{sA}$.
- e) $(e^A)^{\dagger} = e^{(A^{\dagger})}.$
- f) det $e^A = e^{\operatorname{tr} A}$.

Problem 27

We can also write elements of the $\mathcal{A}(S_n)$ in birdtrack notation. In particular, we denote symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

Note that we include a factor of $\frac{1}{n!}$ in the definition of bars over n lines. For instance,

$$= \frac{1}{2} \left(= + \times \right) \text{ and}$$

$$= \frac{1}{3!} \left(= - \times - \times - \times + \times + \times \right).$$
(*)

Notice that in birdtrack notation the sign of a permutation, $(-1)^K$, is determined by the number K of line crossings; if more than two lines cross in a point, one should slightly perturb the diagram before counting, e.g. $\swarrow \rightsquigarrow \searrow (K=3)$.

a) Expand \square and \square as in (*).

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of lines, e.g.

$$= \frac{1}{2} \left(= + \times \right) \quad \text{or}$$

$$= \frac{1}{2} \left(= - \times \right)$$

It follows directly from the definition of S and A that when intertwining any two lines S remains invariant and A changes by a factor of (-1), i.e.

b) Explain why this implies that whenever two (or more) lines connect a symmetriser to an anti-symmetrizer the whole expression vanishes, e.g.

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on the r.h.s. of

$$\underbrace{\vdots}_{\underline{\cdot}} = \frac{1}{n} \left(\underbrace{\vdots}_{\underline{\cdot}} + \underbrace{\vdots}_{\underline{\cdot}} + \ldots + \underbrace{\cdot}_{\underline{\cdot}} \right)$$

we have sorted the terms according to where the last line is mapped – to the *n*th, to the (n-1)th, ..., to the first line line. Multiplying with $\frac{1}{n-1}$ from the left and disentangling lines we obtain the compact relation

$$\underbrace{\vdots}_{\vdots} = \frac{1}{n} \left(\underbrace{\vdots}_{\vdots} + (n-1) \underbrace{\vdots}_{\vdots} \right)$$

c) Derive the corresponding recursion relation for anti-symmetrisers.