Groups and Representations

Homework Assignment 8 (due on 14 December 2022)

Problem 28

We consider the abelian group $C_{3}=\left\{e, a, a^{-1}\right\} \cong \mathbb{Z}_{3}$.
a) How many (non-equivalent) irreps does C_{3} have, what are their dimensions and how often do they appear in the regular rep?
b) Show that

$$
e_{1}=\frac{1}{3}\left(e+a+a^{-1}\right)
$$

is a primitive idempotent, generating the trivial rep.
c) Use the ansatz

$$
e_{2}=x e+y a+z a^{-1}
$$

in order to find all primitive idempotents.
d) For each primitive idempotent find out whether it generates a new (non-equivalent) irrep or an irrep equivalent to one generated by a previous idempotent.
e) Specify all minimal left ideals and construct the corresponding irreps of C_{3}. Collect your results in a table.

Problem 29

Determine once more the characters of the irreps of S_{3} by using the methods of Section 4.3.1.

Problem 30

Let V be a (complex, finite dimensional) vector space and let V^{*} be its dual, i.e. the space of all linear maps $V \rightarrow \mathbb{C}$. For a linear map $A: V \rightarrow V$ we define its dual $A^{*}: V^{*} \rightarrow V^{*}$ by $V^{*} \ni f \mapsto A^{*}(f)=f \circ A$. Let G be a group and $\Gamma: G \rightarrow \mathrm{GL}(V)$ a representation.
a) Define a representation $\Gamma^{*}: G \rightarrow \mathrm{GL}\left(V^{*}\right)$ in a natural way.

Hint: Simply replacing $\Gamma(g): V \rightarrow V$ by its dual map doesn't quite work (why?) but with a slight modification it does.

Let $\left\{e_{j}\right\}$ be a basis of V and $\left\{f_{j}\right\}$ the corresponding dual basis, i.e. $f_{j}\left(e_{k}\right)=\delta_{j k} \forall j, k=$ $1, \ldots, \operatorname{dim} V=\operatorname{dim} V^{*}$. For $g \in G$ we express $\Gamma(g): V \rightarrow V$ and $\Gamma^{*}(g): V^{*} \rightarrow V^{*}$ as matrices in the bases $\left\{e_{j}\right\}$ and $\left\{f_{j}\right\}$, respectively.
b) What is the relation between these two matrices? What happens if Γ is unitary?

Problem 31

Let $\vec{n} \in S^{2} \hookrightarrow \mathbb{R}^{3}$ be a unit vector in \mathbb{R}^{3} and $\varphi \in \mathbb{R}$. We denote by $\sigma_{j}, j=1,2,3$, the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and we define

$$
\vec{\sigma}=\left(\begin{array}{lll}
\sigma_{1} & \sigma_{2} & \sigma_{3}
\end{array}\right) .
$$

Show that

$$
\exp \left(-\mathrm{i} \frac{\varphi}{2} \vec{\sigma} \cdot \vec{n}\right)=\mathbb{1} \cos \frac{\varphi}{2}-\mathrm{i} \vec{\sigma} \cdot \vec{n} \sin \frac{\varphi}{2},
$$

and verify that $\exp \left(-\mathrm{i} \frac{\varphi}{2} \vec{\sigma} \cdot \vec{n}\right) \in \mathrm{SU}(2)$.
Hint: First calculate $(\vec{\sigma} \cdot \vec{n})^{2}$.

