Groups and Representations

Homework Assignment 10 (due on 11 January 2023)

Problem 36

The Lie algebra of $\mathrm{SU}(2)$ is the (real) vector space

$$
\mathfrak{s u}(2)=\left\{X \in \mathbb{C}^{2 \times 2}: \operatorname{tr}(X)=0, X^{\dagger}=X\right\} .
$$

A basis is given by the Pauli matrices (see Problem 31). Show:
a) $\mathrm{SU}(2)$ acts on $\mathfrak{s u}(2)$ by conjugation: $X \mapsto U X U^{\dagger}$.
b) $\langle X, Y\rangle=\frac{1}{2} \operatorname{tr}(X Y)$ defines a scalar product on $\mathfrak{s u}(2)$.

Hint: Begin by calculating $\operatorname{tr}\left(\sigma_{i} \sigma_{j}\right)$.
c) Every $U \in \mathrm{SU}(2) \cong S^{3}$ (cf. Problem 20) can be written as $\mathrm{e}^{-\frac{1}{2} \mathrm{i} \alpha \vec{\sigma} \cdot \vec{n}}$ with $\vec{n} \in S^{2} \hookrightarrow \mathbb{R}^{3}$ (cf. Problem 31). Over which values does α run?

Problem 37

We define $\mathfrak{s l}(2, \mathbb{C}):=\left\{A \in \mathbb{C}^{2 \times 2}: \operatorname{tr} A=0\right\}$. Then the matrix exponential is a map

$$
\exp : \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathrm{SL}(2, \mathbb{C})=\left\{B \in \mathbb{C}^{2 \times 2}: \operatorname{det} B=1\right\}
$$

a) Show that the matrix

$$
S_{a}=\left(\begin{array}{cc}
-1 & a \\
0 & -1
\end{array}\right)
$$

is in the image of \exp iff $a=0$.
b) Is $\operatorname{SL}(2, \mathbb{C})$ compact?

Problem 38

In birdtrack notation we write vectors $v \in V$ or tensors $t \in V^{\otimes n}$, as blobs with one or several lines attached, e.g.

$$
v=\longrightarrow \in V \quad \text { or } \quad t=\square) \in V^{\otimes 3}
$$

Expressed in a basis, components are

$$
v_{j}=i \quad \text { or } \quad t_{j k \ell}=\frac{i}{i}
$$

i.e. we write indices on the lines. Linear maps $A: V^{\otimes n} \rightarrow V^{\otimes n}$ are represented by blobs with n legs on each side, e.g.

$$
A=\bar{\square} \square: V^{\otimes 3} \rightarrow V^{\otimes 3}
$$

and with $t \in V^{\otimes 3}$ we have

$$
A t=\square \square] \in V^{\otimes 3} .
$$

Birdtracks for permutations $p \in S_{n}$, or $\in \mathcal{A}\left(S_{n}\right)$, see Problems $23 \& 27$, can now be applied (as linear maps) to elements of $V^{\otimes n}$, e.g.

$$
(12) t=X
$$

We obtain traces of linear maps by connecting the first line on the left to the first line on the right etc. (cf. also Problem 23), with each loop contributing a factor of $\operatorname{dim} V=: N$ (why?), e.g. for $e,(12) \in \mathcal{A}\left(S_{3}\right)$ we get

a) Calculate the trace of $(132) \in S_{3}$ and the trace of $\overline{-}$ — $\in \mathcal{A}\left(S_{3}\right)$.
b) Normalise the Young operators $e_{\square 巴}, e_{\boxplus}, e_{\boxplus}^{(23)}, e_{母} \in \mathcal{A}\left(S_{3}\right)$ of Section 5.3 s.t. they are idempotent. Determine the traces of these primitive idempotents. Later we will see that these are the dimensions of $\operatorname{GL}(N)$ irreps contained in $V^{\otimes 3}$.
Hint: Some identities from Problem 27 are useful.

