Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler & Saradha Senthil-Velu

Groups and Representations

Homework Assignment 11 (due on 18 January 2023)

Problem 39

The elements of $\mathfrak{su}(2)$ can be written as $X = \vec{\sigma} \cdot \vec{x}$ with $\vec{x} \in \mathbb{R}^3$ (cf. Problems 31 & 36). The action of SU(2) on $\mathfrak{su}(2)$ by conjugation (see Problem 36) then defines a homomorphism

$$\varphi: \mathrm{SU}(2) \to \mathrm{GL}(3, \mathbb{R})$$
$$\vec{\sigma} \cdot \varphi(U)\vec{x} := U(\vec{\sigma} \cdot \vec{x})U^{\dagger}$$

Show that

- a) $\varphi(U)_{ij} = \frac{1}{2} \operatorname{tr}(\sigma_i U \sigma_j U^{\dagger}),$
- b) $\varphi(U)^T = \varphi(U)^{-1}$, and
- c) $det(\varphi(U)) = 1$. HINT: Recall the connectedness properties of SU(2).

Hence $\varphi(\mathrm{SU}(2)) \subset \mathrm{SO}(3)$.

- d) Determine the kernel of φ .
- e) Calculate $\varphi(U_{\alpha})$ for $U_{\alpha} = e^{-\frac{1}{2}i\alpha\sigma_3}$, $\alpha \in [0, 2\pi)$ and explain that $\varphi(SU(2)) = SO(3)$. What can we now conclude using the homomorphism theorem (Problem 8)?

Problem 40

a) Determine the Haar measure for SU(2) in axis-angle parametrisation,

$$U = \exp\left(-\mathrm{i}\frac{\alpha}{2}\vec{\sigma}\cdot\vec{x}\right) \,,$$

with $0 \le \alpha \le 2\pi$ and $\vec{x} \in S^2 \hookrightarrow \mathbb{R}^3$. Normalise s.t. vol(SU(2)) = 1.

HINT: It is convenient to first show $(\vec{x} \cdot \vec{\sigma})(\vec{y} \cdot \vec{\sigma}) = \mathbb{1}\vec{x} \cdot \vec{y} + i\vec{\sigma}(\vec{x} \times \vec{y})$ and to use the unit vectors $\vec{e_r}, \vec{e_{\vartheta}}, \vec{e_{\varphi}}$ for spherical coordinates.

b) Use the result of (a) together with the results of Problem 39 in order to determine the Haar measure for SO(3) in the axis-angle parametrisation.