## Groups and Representations

Homework Assignment 13 (due on 1 February 2023)

Problem 44 (continuation of Problem 43)
Let $K: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ be the Killing form from Problem 43, and let $G$ be such that $K$ is positive definite. We choose an orthonormal basis $\left\{X_{j}\right\}$ with respect to $K$, i.e. $K\left(X_{j}, X_{k}\right)=\delta_{j k}$, and define $C_{2} \in E(\mathfrak{g})$ by

$$
C_{2}=\sum_{j} X_{j} X_{j} .
$$

Show:
c) $C_{2}$ is independent of the choice of basis.
d) $C_{2}$ is a Casimir operator (the so-called quadratic Casimir operator), i.e.

$$
\operatorname{Ad}_{g}\left(C_{2}\right)=C_{2} \quad \forall g \in G
$$

## Problem 45

Let $|j\rangle, j=1, \ldots, N$, be the canonical basis for $V \cong \mathbb{C}^{N}$, and let $\operatorname{GL}(N)$ act on $V$ in the defining representation, i.e. $g|j\rangle=|k\rangle g_{k j}$ for $g \in \mathrm{GL}(N)$ (recall that we sum over repeated indices). For $V \otimes V$ choose the product basis $|j k\rangle=|j\rangle \otimes|k\rangle, j, k=1, \ldots, N$, and let $\mathrm{GL}(N)$ act as follows,

$$
g|j k\rangle=\left|j^{\prime} k^{\prime}\right\rangle g_{j^{\prime} j} g_{k^{\prime} k} .
$$

Specialise to $N=2$ and consider $e_{\mathrm{E}} V \otimes V$. We obtain a basis for $e_{\mathrm{E}} V \otimes V$ by applying $e_{日}$ to basis tensors $|j k\rangle$.
Show that $e_{\mathrm{E}} V \otimes V$ is invariant under $\mathrm{GL}(N)$ by explicitly calculating the representation of $G$ carried by $e_{\theta} V \otimes V$. To this end apply $g \in \mathrm{GL}(2)$ to a basis of $e_{\theta} V \otimes V$ and read off the representation. Is this representation irreducible?
Repeat with $\mathrm{GL}(2)$ replaced by $\mathrm{SU}(2)$. Which representation do we obtain now?

