Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler & Saradha Senthil-Velu

Groups and Representations

Homework Assignment 13 (due on 1 February 2023)

Problem 44 (continuation of Problem 43)

Let $K : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ be the Killing form from Problem 43, and let G be such that K is positive definite. We choose an orthonormal basis $\{X_j\}$ with respect to K, i.e. $K(X_j, X_k) = \delta_{jk}$, and define $C_2 \in E(\mathfrak{g})$ by

$$C_2 = \sum_j X_j X_j \,.$$

Show:

c) C_2 is independent of the choice of basis.

d) C_2 is a Casimir operator (the so-called *quadratic Casimir operator*), i.e.

$$\operatorname{Ad}_q(C_2) = C_2 \quad \forall \ g \in G.$$

Problem 45

Let $|j\rangle$, j = 1, ..., N, be the canonical basis for $V \cong \mathbb{C}^N$, and let $\operatorname{GL}(N)$ act on V in the defining representation, i.e. $g|j\rangle = |k\rangle g_{kj}$ for $g \in \operatorname{GL}(N)$ (recall that we sum over repeated indices). For $V \otimes V$ choose the product basis $|jk\rangle = |j\rangle \otimes |k\rangle$, j, k = 1, ..., N, and let $\operatorname{GL}(N)$ act as follows,

$$g|jk\rangle = |j'k'\rangle g_{j'j} g_{k'k}.$$

Specialise to N = 2 and consider $e_{\square} V \otimes V$. We obtain a basis for $e_{\square} V \otimes V$ by applying e_{\square} to basis tensors $|jk\rangle$.

Show that $e_{\square}V \otimes V$ is invariant under $\operatorname{GL}(N)$ by explicitly calculating the representation of G carried by $e_{\square}V \otimes V$. To this end apply $g \in \operatorname{GL}(2)$ to a basis of $e_{\square}V \otimes V$ and read off the representation. Is this representation irreducible?

Repeat with GL(2) replaced by SU(2). Which representation do we obtain now?