Groups and Representations

Homework Assignment 14 (due on 8 February 2023)

Problem 46

We show that the GL (N) irrep corresponding to the Young diagram $\Theta_{\mathrm{a}}=$ \square with N rows is given by the determinant:

- First recall that for vectors $\left|i_{1}, \ldots, i_{N}\right\rangle$ contributing to $e_{\mathrm{a}} g|\alpha\rangle$ all i_{k} are different.
- Write these vectors as $p|1, \ldots, N\rangle$ with a permutation p.
- Then calculate $e_{\mathrm{a}} g|1, \ldots, N\rangle$ for $g \in \operatorname{GL}(N)$.

Which irrep corresponds to Θ_{a} if we replace $\mathrm{GL}(N)$ by the subgroup $\mathrm{SU}(N) \subset \mathrm{GL}(N)$?

Problem 47

Consider Young diagrams with row lenghts $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, and $\lambda^{\prime}=\left(\lambda_{1}+k, \ldots, \lambda_{N}+k\right)$, $k \geq 1$. Show that the $\mathrm{SU}(N)$-irreps Γ^{λ} and $\Gamma^{\lambda^{\prime}}$ are equivalent.
Hint: Use the Littlewood-Richardson rule and the result of Problem 46.

Problem 48

Let Γ^{λ} be an $\mathrm{SU}(3)$-irrep with Young diagram λ. Determine how often Γ^{λ} appears in the product rep $\lambda \otimes \square$.
Hint: Study separately the cases of rectangular Young diagrams λ (with one or two rows) and of non-rectangular diagrams.

Problem 49

Decompose the product rep $\square \otimes \square \otimes \square$ of $\mathrm{SU}(3)$ into irreps. Use the notation of Problem 28 (e.g. $|u d s\rangle=|u\rangle \otimes|d\rangle \otimes|s\rangle \in \square^{\otimes 3}$) and explicitly construct bases for the irreducible invariant subspaces. Compare with the results of Problem 28. What is the relation between the irreducible subspaces with respect to $\mathrm{SU}(3)$ and those with respect to S_{3} ?

