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1.2 Basic notions1

De�nition: (group)
Let G 6= ∅ be a set and let ◦ be an operation ◦ : G×G→ G. We call (G, ◦) a group if:

(G1) a, b ∈ G ⇒ a ◦ b ∈ G (closure) (already implied by ◦ : G×G→ G)

(G2) (a ◦ b) ◦ c = a ◦ (b ◦ c) ∀ a, b, c ∈ G (associativity)

(G3) ∃ e ∈ G with a ◦ e = a = e ◦ a ∀ a ∈ G (identity/neutral element)

(G4) for each a ∈ G ∃ a−1 ∈ G with a ◦ a−1 = e = a−1 ◦ a, with e from (G3) (inverses)

De�nition: (abelian group)
A group (G, ◦) is called commutative or abelian, if in addition we have:
(G5) a ◦ b = b ◦ a ∀ a, b ∈ G (commutativity)

Remarks:

1. The identity e is unique. For each a ∈ G the corresponding inverse is unique.
Can you show this?

2. We often call the operation multiplication and write a · b or just ab instead of a ◦ b.
3. If the number of group elements is �nite, we speak of a �nite group, and we call the

number of group elements the order |G| of the group. (otherwise: in�nite group).

4. A �nite group is completely determined by its group table:

https://youtu.be/gmTSAOSs9U0 (4min) (1)

No two elements within one row (or column) can be the same. (see exercises)
This implies the rearrangement lemma: If we multiply all elements of a group
{e, a, b, c, . . .} by one of the elements, we obtains again all elements, in general
in a di�erent order.

Examples:

trivial group, (Z,+), and (R \ {0}, ·) https://youtu.be/FuUWrnBVstQ (2min) (2)

symmetry group of an object https://youtu.be/ol0M_fzkObA (4min) (3)

De�nition: (subgroup)
Let (G, ◦) be a group. A subset H ⊆ G, which satis�es (G1)�(G4) (with the same
operation ◦), is called a subgroup of G.

1section numbering according to lecture notes.

https://youtu.be/gmTSAOSs9U0
https://youtu.be/FuUWrnBVstQ
https://youtu.be/ol0M_fzkObA


Remarks:

1. Every group has two trivial subgroups: {e} and G.
All other subgroups are called non-trivial.

2. If G is �nite then |H| divides |G|. (proof later)

De�nition: (homomorphism)
Given two groups (G, ◦) and (G′, •), a map f : G→ G′ is called a homomorphism, if

f(a ◦ b) = f(a) • f(b) ∀ a, b ∈ G .

Remarks:

1. A homomorphism f maps the identity to the identity and inverses to inverses, more
precisely f(eG) = eG′ and f(a−1) = f(a)−1 ∀ a ∈ G.
Can you show this?

2. The image of the homomorphism f : G→ G′ is

im(f) = f(G) = {f(g) : g ∈ G} ,

the kernel of f is the preimage of the identity of G′ ,

ker(f) = {g ∈ G : f(g) = eG′} .

De�nition: (isomorphism)
A bijective homomorphism f : G → G′ is called isomorphism. We then say that G and
G′ are isomorphic, and write G ∼= G′.

Remark: Isomorphic groups have the same group table, i.e. they are identical except for
what we call their elements (and the group operation). (similarly for in�nite groups)

1.3 Examples and outlook

Up to isomorphy there is only one group with two elements � but it comes in many guises:

https://youtu.be/7e8SMpY4Fk4 (9min) (4)

Often we encounter cyclic groups:

https://youtu.be/TwITmOaX1gA (2min) (5)

Functions that transform in a special way under a group will provide an interesting playing
�eld for groups:

https://youtu.be/UdH9UIU5UCY (6min) (6)

https://youtu.be/7e8SMpY4Fk4
https://youtu.be/TwITmOaX1gA
https://youtu.be/UdH9UIU5UCY
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1.4 Permutations � the symmetric group

De�nition: (symmetric group)
The symmetric group of degree n, Sn, are the bijections of {1, 2, . . . , n} to itself under
composition.

Remarks:

1. Elements of Sn are called permutations.

2. |Sn| = n!

We use three notations for permutations:

two-line notation https://youtu.be/0mjbR0pjkFs (1min) (1)

cycle notation https://youtu.be/kvISarU6UWA (5min) (2)

birdtrack notation https://youtu.be/lhllM7IPf3M (4min) (3)

Examples:

1. S2 = {e, (12)} ∼= Z2

2. S3 = {e, (12), (13), (23), (123), (132)}
Construct the group table! Is S3 abelian?
subgroups: {e} and S3 (trivial)

{e, (12)}, {e, (13)}, {e, (23)}, all ∼= Z2

{e, (123), (321)} ∼= C3

Theorem 1. (Cayley)
Every group of order n is isomorphic to a subgroup of Sn.

Proof: https://youtu.be/r4_oD2o6aqo (5min) (4)

Fun exercise (optional): Watch the video An Impossible Bet by minutephysics,

https://youtu.be/eivGlBKlK6M (2min) (5)

and come up with a good strategy. Don't watch the solution! Think about cycles instead.

https://youtu.be/0mjbR0pjkFs
https://youtu.be/kvISarU6UWA
https://youtu.be/lhllM7IPf3M
https://youtu.be/r4_oD2o6aqo
https://youtu.be/eivGlBKlK6M


1.5 Group actions

De�nition: (group action)
Let G be a group and M a set. A (group) action of G on M is a map

G×M →M

(g,m) 7→ gm ,

which satis�es

em = m ∀ m ∈M and

g(hm) = (gh)m ∀ g, h ∈ G and ∀ m ∈M .

Remark: Thus, M →M , m 7→ gm, is bijective for each (�xed) g ∈ G.
Can you show this?

De�nition: (orbit)
The orbit of the point m ∈M under an action of a group G on M is de�ned as

Gm = {gm : g ∈ G} .

Remarks:

1. The orbit of a �typical� point contains n = |G| elements.

2. The orbit of a �special� point contains less than n = |G| elements.

Example: equilateral triangle https://youtu.be/1rUaIp5sJr8 (4min) (6)

De�nition: (stabiliser)
Let G×M →M , (g,m) 7→ gm, be an action of G on M . The set of group elements that
map a given m ∈M to itself, i.e.

Gm = {g ∈ G : gm = m} ,

is called stabiliser (or isotropy group or little group) of m.

Remark: Gm is a group. (see exercises)

Example: equilateral triangle https://youtu.be/gPot13SMf0o (1min) (7)

Notice that in all three cases |Gm| · |Gm| = |G|. This is true in general for �nite groups
(orbit-stabiliser theorem, see exercises).

https://youtu.be/1rUaIp5sJr8
https://youtu.be/gPot13SMf0o


1.6 Conjugacy classes and normal subgroups

De�nition: (conjugation)
Let G be a group. We say x ∈ G is conjugate to y ∈ G ⇔

Def.
∃ g ∈ G : y = gxg−1.

We then write x ∼ y.

Show that ∼ is an equivalence relation, i.e. show re�exivity, symmetry and transitivity.

Examples: S3, SO(3) https://youtu.be/LpBfagD302Q (6min) (8)

De�nition: (conjugacy class)
For a group G and x ∈ G we call {gxg−1 : g ∈ G} the conjugacy class of x.

Remarks:

1. The class of e contains only e, since geg−1 = e ∀ g.
2. For abelian groups each element forms a class of its own, since gxg−1 = x ∀ g.
3. In general a class is not a subgroup (cf. below).

4. Each element of G is contained in exactly one class. Why?

5. |G| is divisible by the number of elements of each conjugacy class.
(orbit-stabiliser theorem, see exercises)

6. Later: The number of conjugacy classes is equal to the number of non-equivalent
irreducible representations of a �nite group.

Example: conjugacy classes of S3 https://youtu.be/FOr3dReVKCk (3min) (9)

De�nition: (conjugate subgroups, normal subgroup)

(i) We call a subgroup K ⊆ G conjugate to a subgroup H ⊆ G if ∃ g ∈ G such that

K = gHg−1 = {ghg−1 : h ∈ H} .

(ii) If ghg−1 ∈ H ∀h ∈ H und ∀ g ∈ G then we call H a normal subgroup (or invariant
subgroup) of G.

Study the behaviour of the subgroups of S3 under conjugation!

Remark: A �nite group is called simple if it has no non-trivial normal subgroup.

https://youtu.be/LpBfagD302Q
https://youtu.be/FOr3dReVKCk
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1.7 Cosets and quotient groups

De�nition: (coset)
Let G be a group and H ⊆ G a subgroup. For g ∈ G the set

gH = {gh : h ∈ H}

is called a left coset of H (in G). Similarly, we call Hg = {hg : h ∈ H} a right coset of H.

Remarks:

1. gH,Hg ⊆ G.

2. If g ∈ H ⇒ gH = Hg = H. Why?

3. |gH| = |H|. Why?

4. In the following we consider mostly left cosets.

5. Two cosets g1H and g2H are either identical (⇔ g−1
1 g2 ∈ H) or disjoint.

Proof: https://youtu.be/yJI8Rlju87g (2min) (1)

6. Can you see that this implies that |H| divides |G|?
Example:

S3 and subgroups
H1 = {e, (12)} (not normal) and
H2 = {e, (123), (132)} (normal)

https://youtu.be/SIA9F0klJKQ (10min) (2)

De�nition: (quotient group)
Let H be a normal subgroup of G. We de�ne the quotient group (G/H, ·) as the set of
cosets,

G/H = {gH : g ∈ G} , with group law (g1H) · (g2H) = (g1g2)H .

Remarks:

1. |G/H| = |G|
|H|

2. (G/H, ·) is actually a group:

https://youtu.be/N75Wz4j_Aa8 (3min) (3)

Where did we need that H is normal?

Example:
https://youtu.be/GodmqXXT-pM (1min) (4)

https://youtu.be/yJI8Rlju87g
https://youtu.be/SIA9F0klJKQ
https://youtu.be/N75Wz4j_Aa8
https://youtu.be/GodmqXXT-pM


1.8 Direct product

De�nition: (direct product)
For two groups (A, ◦) and (B, •) the direct product is the Cartesian product A×B with
group law

(a1, b1) · (a2, b2) = (a1 ◦ a2, b1 • b2) .

Remarks:

1. eA×B = (eA, eB) and (a, b)−1 = (a−1, b−1)

2. for �nite groups: |A×B| = |A||B|
3. G = A×B has a normal subgroup isomorphic to A, and G/A ∼= B (and vice versa):

https://youtu.be/0ppFs0QuI9w (5min) (5)

Caveat: In general, for a normal subgroup H of G, G 6∼= H × (G/H). Why not?

1.9 Example: The homomorphism from SL(2,C) to the Lorentz group

Let M be the Minkowski space, i.e. M = R4 with the Lorentz metric1

‖x‖2 = x2
0 − x2

1 − x2
2 − x2

3 .

We call x = (x0, x1, x2, x3) a four-vector. A (homogeneous) Lorentz transformation Λ is
a linear map M →M , which preserves the Lorentz metric, i.e.

‖Λx‖2 = ‖x‖2 ∀ x ∈M .

The Lorentz group L = O(3, 1) is the group of all (homogeneous) Lorentz transformations.
We identify each x ∈M with a Hermitian 2× 2 matrix:

X = x01 + x1σ1 + x2σ2 + x3σ3 , where

1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

i.e. X =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

The σj are called Pauli matrices. Convince yourself that detX = ‖x‖2.

Let's de�ne a homomorphism from SL(2,C) to L = O(3, 1):

https://youtu.be/GRIdoIQWCVg (5min) (6)

The homomorphism φ : SL(2,C)→ O(3, 1) is not an ismomorphism.

I Show that φ is not injective.

I φ is not surjective either:

https://youtu.be/YGpTOZ7cwXU (2min) (7)

1More precisely, ‖x‖2 = d(x, x) with the pseudo-Riemannian metric d(x, y) = x0y0−x1y1−x2y2−x3y3.

https://youtu.be/0ppFs0QuI9w
https://youtu.be/GRIdoIQWCVg
https://youtu.be/YGpTOZ7cwXU
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2 Representations

2.1 De�nitions

De�nition: (representation)
Let G be a group and V a vector space. A representation (rep) Γ of G is a homomorphism
G→ GL(V ), i.e. into the bijective linear maps V → V , i.e. in particular

Γ(g)Γ(h) = Γ(gh) ∀ g, h ∈ G

and Γ(e) = 1 (identity matrix/operator). We call dimV the dimension of the represen-
tation, and we will require dimV > 0.

Remarks:

1. A representation is an action of G on V (in addition: linear).

2. We say that V carries the representation Γ, and we call V the carrier space (of Γ).

3. Unless otherwise stated we consider vector spaces over C (maybe sometimes over
R, probably never over other �elds), e.g. Cn or L2(Rd),1 equipped with a scalar
product 〈·|·〉 : V × V → C.

4. Choosing an orthonormal basis of V (if �nite-dimensional), {vj : j = 1, . . . , d =
dimV }, each Γ(g) corresponds to a d× d matrix with elements

Γ(g)jk = 〈vj|Γ(g)vk〉 ,

and we call Γ a matrix representation.

We say: The vi transform under G in the representation Γ.

5. dimV = tr Γ(e) (if V is �nite-dimensional)

Example:

a 3-dimensional rep of S3 https://youtu.be/K2Dt1BGL1Vk (2min) (1)

Determine and .

De�nition: (faithful representation)
We call a representation faithful if the homomorphism Γ : G→ GL(V ) is injective, i.e. if
di�erent group elements are represented by di�erent matrices.

1It's best to think of the �nite-dimensional case for the moment. In the in�nite-dimensional case we'd

really want separable Hilbert spaces and bounded linear operators Γ(g).

https://youtu.be/K2Dt1BGL1Vk


Remarks:

1. Every group has the trivial representation, with Γ(g) = 1 ∀ g ∈ G; in general not
faithful.

2. If G has a non-trivial normal subgroup H, then a representation of the quotient
group G/H induces a representation of G. This representation is not faithful.

https://youtu.be/PS2YTzl4a2Y (3min) (2)

Show: If a non-trivial rep Γ is not faithful, thenG has a non-trivial normal subgroup
H, and Γ induces a faithful representation of the quotient group G/H.

De�nition: (unitary representation)
A representation Γ : G → GL(V ) is called unitary, if Γ(g) is unitary ∀ g ∈ G, i.e.
〈Γ(g)v|Γ(g)w〉 = 〈v|w〉 ∀ v, w ∈ V .
Remarks:

1. If V is �nite-dimensional and if we choose an orthonormal basis, then such a repre-
sentation is in terms of unitary matrices.

2. Unitary representations are important for applications in physics, since it is in terms
of them that symmetries are implemented in quantum mechanics (or quantum �eld
theory).

2.2 Equivalent Representations

De�nition: (equivalent representations)
We say that two representations Γ : G → GL(V ) and Γ̃ : G → GL(W ) are equivalent, if
there exists an invertible linear map S : V → W such that

Γ(g) = S−1 Γ̃(g)S ∀ g ∈ G .

Remark: If the linear map is unitary, i.e. (writing U instead of S) U : V → W with
〈Uφ|Uψ〉W = 〈φ|ψ〉V then we say that the representations are unitarily equivalent. For
�nite-dimensional representations we have V ∼= W ∼= CdimV , and by choosing orthonormal
bases U becomes a unitary matrix.

Theorem 2. Let G be a �nite group, Γ : G→ GL(V ) a (�nite-dimensional) representation
and 〈·|·〉 a scalar product on V . Then Γ is equivalent to a unitary representation.

Proof: (v, w) =
∑
g∈G

〈Γ(g)v|Γ(g)w〉 is also a scalar product:

https://youtu.be/-HWa-iaBZVk (4min) (3)

Let {vj} be an orthonormal basis (ONB) with respect to 〈·|·〉 and {wj} an ONB with
respect to (·, ·). Then there exists an invertible map S : V → V with Swj = vj (change
of basis). Hence

(v, w) = 〈Sv|Sw〉 . https://youtu.be/L_HIR-Ug7nc (4min) (4)

Finally, Γ̃ with Γ̃(g) = SΓ(g)S−1 is equivalent to Γ and unitary:

https://youtu.be/1iXbQXyYvjY (6min) (5)

https://youtu.be/PS2YTzl4a2Y
https://youtu.be/-HWa-iaBZVk
https://youtu.be/L_HIR-Ug7nc
https://youtu.be/1iXbQXyYvjY


2.4 Irreducible Representations

De�nition: (invariant subspace)
Let Γ : G→ GL(V ) be a representation and U ⊆ V a subspace of V . U is called invariant
subspace (with respect to Γ), if Γ(g)v ∈ U ∀ v ∈ U and ∀ g ∈ G.
Remark: Every carrier space has two trivial invariant subspaces, namely V and {0}. All
other invariant subspace (if there are any) are called non-trivial.

De�nition: (irreducible representation & complete reducibility)

We call a representation Γ : G→ GL(V )

(i) irreducible, if V possesses no non-trivial invariant subspace. Then we also call V
irreducible with respect to Γ.

(ii) reducible, if V possesses a non-trivial invariant subspace U .

(iii) completely reducible, if V can be written as a direct sum of irreducible invariant
subspaces.

Abbreviation for �irreducible representation�: irrep

Example:
https://youtu.be/kfpZhLGZ9IA (5min) (6)

Write
(

1
2
3

)
as linear combination of vectors from U1 and U2. Construct an ONB (with

respect to the canonical scalar product) s.t. the �rst basis vector spans U1 and the other
two span U2.

https://youtu.be/kfpZhLGZ9IA
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2.4 Irreducible Representations (cont.)

Theorem 3. Let Γ : G → GL(V ) be a unitary representation and U ⊆ V an invariant
subspace. Then:

(i) U⊥ = {v ∈ V : 〈u|v〉 = 0 ∀ u ∈ U} is also invariant,

(ii) the restrictions Γ|U and Γ|U⊥ de�ne representations Γ1 and Γ2, and

(iii) Γ ist equivalent to Γ1 ⊕ Γ2; we simply write Γ = Γ1 ⊕ Γ2.

Corollary: (Maschke's Theorem)
We can write every (�nite-dimensional) unitary representation as a direct sum of irreducible
representations.

Explain why this implies that for �nite groups every (�nite-dimensional) representation
is completely reducible.

Proof (of Theorem 3 & Corollary):

https://youtu.be/FJjdh6WNVF8 (4min) (1)

Remark: Given a completely reducible representation Γ : G → GL(V ), we can �nd a
basis of V such that in matrix notation

Γ(g) =


Γ1(g) 0

Γ2(g)
Γ3(g)

0
. . .

 ,

where the Γj are irreducible (dj × dj blocks with dj = dim Γj).

Here an irreducible representation can appear more than once, (relabel)

Γ = Γ1 ⊕ · · · ⊕ Γ1︸ ︷︷ ︸
a1 times

⊕ Γ2 ⊕ · · · ⊕ Γ2︸ ︷︷ ︸
a2 times

⊕ · · · =
⊕
j

ajΓ
j ,

https://youtu.be/f-9KAeE3oPc (2min)

i.e. in Γ the irreducible representation Γj is contained aj times.

https://youtu.be/FJjdh6WNVF8
https://youtu.be/f-9KAeE3oPc


2.4.1 Example: OA operators for the group D3

Consider a group G of orthogonal matrices A : Rn → Rn and some functions ϕ : Rn → C.
Then (OAϕ)(~x) = ϕ(A−1~x) de�nes a representation of G on some function space.

https://youtu.be/9qYex-CZTf0 (2min) (2)

Choose G = D3, the symmetry group of an equilateral triangle (∼= S3),

• •

•

L1

L2 L3

x

y

~x1 = (x1, y1)

~x2 = (x2, y2)~x3 = (x3, y3)

n = 2, and ϕj(~x) = e−|~x−~xj |
2
. Then span(ϕ1, ϕ2, ϕ3) is invariant and carries a three-

dimensional rep of S3:

https://youtu.be/v3hSAc-h7mg (5min) (3)

We �nd two invariant subspaces, one carries the trivial rep, and the other carries a two-
dimensional rep:

https://youtu.be/FdpzE7YqR_k (4min) (4)

2.5 Schur's Lemmas and orthogonality of irreps

Theorem 4. (Schur's Lemma 1)
Let G be a group, Γ : G → GL(V ) a �nite-dimensional, irreducible representation and
A : V → V a linear map. If A commutes with Γ, i.e. AΓ(g) = Γ(g)A ∀ g ∈ G, then
A = c1 for some c ∈ C.

Proof: https://youtu.be/JStDaicTKaU (3min) (5)

Corollary: For an abelian group G, every irreducible representation has dimension 1.
Explain!

Theorem 5. (Schur's Lemma 2)
Let G be a group, Γ : G → GL(V ) and Γ̃ : G → GL(W ) two �nite-dimensional, unitary
irreducible representations and A : V → W a linear map. If

AΓ(g) = Γ̃(g)A ∀ g ∈ G ,

then A = 0 or Γ and Γ̃ are unitarily equivalent.

Proof: https://youtu.be/Or9gnVwmuDo (5min) (6)

https://youtu.be/9qYex-CZTf0
https://youtu.be/v3hSAc-h7mg
https://youtu.be/FdpzE7YqR_k
https://youtu.be/JStDaicTKaU
https://youtu.be/Or9gnVwmuDo
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2.5 Schur's Lemmas and orthogonality of irreps (cont.)

Theorem 6. Let G be a �nite group and Γj, j = 1, 2, . . ., non-equivalent unitary irre-
ducible representations with dim Γj = dj. Then the matrix elements obey the orthogonality
relation

1

|G|
∑
g∈G

(Γj(g)µν) Γk(g)µ′ν′ =
1

dj
δjk δµµ′ δνν′

∀ µ, ν = 1, . . . , dj and ∀ µ′, ν ′ = 1, . . . , dk.

Proof: https://youtu.be/vWhHL-2cCTw (13min) (1)

Corollary 1 to Theorem 6:∑
j

d2
j ≤ |G| https://youtu.be/bHY8dAFQA-c (4min) (2)

Remark: Later we will see that we actually have equality.

2.6 Characters

De�nition: (character)
For a �nite-dimensional representation Γ : G→ GL(V ) we call χ : G→ C with

χ(g) = tr Γ(g)

the character of the representation.

Remarks:

1. In terms of matrix elements we have χ(g) =
dimV∑
µ=1

Γ(g)µµ.

2. Equivalent reps have the same characters.

3. Characters are constant on conjugacy classes.

Show remarks 2 and 3.

Corollary 2 to Theorem 6. Let G be a �nite group and Γj, j = 1, 2, . . ., non-equivalent,
irreducible representations with dim Γj = dj. Then the characters χj = tr Γj obey the
orthogonality relation

1

|G|
∑
g∈G

χj(g)χk(g) = δjk .

Proof: https://youtu.be/q1P7YKGsFWg (2min) (3)

https://youtu.be/vWhHL-2cCTw
https://youtu.be/bHY8dAFQA-c
https://youtu.be/q1P7YKGsFWg


Remarks:

1. Since the characters depend only on the conjugacy class, we can rewrite the orthog-
onality relation as

1

|G|
∑
c

nc χ
j
c χ

k
c = δjk ,

where c labels classes and nc is the number of elements in class c.

2. Let m be the number of di�erent conjugacy classes of G, and let p the number of
non-equivalent irreducible representations. Then

p ≤ m. https://youtu.be/60Muqu1iMNk (3min)

In the exercises you will show that we actually have p = m.
The m×m matrix with entries χjc is called character table of the group.

3. If Γ is irreducible then

1

|G|
∑
g∈G

|χ(g)|2 = 1 .

If Γ is reducible then

1

|G|
∑
g∈G

|χ(g)|2 > 1 .

https://youtu.be/aewkyIA0O9c (4min) (4)

In https://youtu.be/FdpzE7YqR_k we encountered three reps of S3.
Check for irreducibility!

Example: Here's another irrep of D3
∼= S3:

Γ(e) = Γ(C) = Γ(C̄) = 1 , Γ(σ1) = Γ(σ2) = Γ(σ3) = −1

Hence, the character table of D3
∼= S3 reads

{e} {C, C̄} {σ1, σ2, σ3}
trivial rep χ1 1 1 1
other 1D rep χ2 1 1 −1
2D irrep χ3 2 −1 0

Remarks:

4. If Γ =
⊕
j

ajΓ
j with irreps Γj then

aj =
1

|G|
∑
c

nc χ
j
c χc . https://youtu.be/yW5um6ClOk4 (2min) (5)

Use this in order to verify that the 3D rep of D3
∼= S3 from https://youtu.be/

FdpzE7YqR_k is a direct sum of the trivial rep of the 2D irrep.

https://youtu.be/60Muqu1iMNk
https://youtu.be/aewkyIA0O9c
https://youtu.be/FdpzE7YqR_k
https://youtu.be/yW5um6ClOk4
https://youtu.be/FdpzE7YqR_k
https://youtu.be/FdpzE7YqR_k


Supplement: D3-reps from https://youtu.be/FdpzE7YqR_k.
3D rep:

Γ(e) =

1 0 0
0 1 0
0 0 1

 , Γ(C) =

0 0 1
1 0 0
0 1 0

 , Γ(C̄) =

0 1 0
0 0 1
1 0 0

 ,

Γ(σ1) =

1 0 0
0 0 1
0 1 0

 , Γ(σ2) =

0 0 1
0 1 0
1 0 0

 , Γ(σ3) =

0 1 0
1 0 0
0 0 1

 .

2D irrep:

Γ3(e) =

(
1 0
0 1

)
, Γ3(C) =

(
−1

2

√
3

2

−
√

3
2
−1

2

)
, Γ3(C̄) =

(
−1

2
−
√

3
2√

3
2
−1

2

)

Γ3(σ1) =

(
−1 0
0 1

)
, Γ3(σ2) =

(
1
2
−
√

3
2

−
√

3
2
−1

2

)
, Γ3(σ3) =

(
1
2

√
3

2√
3

2
−1

2

)

https://youtu.be/FdpzE7YqR_k
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2.7 The regular representation

De�nition: (group algebra)
For a �nite group G we de�ne its group algebra A(G) as the vector space spanned by the
group elements, i.e. we form linear combinations

A(G) 3 r =

|G|∑
j=1

rjgj , rj ∈ C ,

with multiplication rule( |G|∑
j=1

qjgj

)( |G|∑
k=1

rkgk

)
=

|G|∑
j=1

|G|∑
k=1

qjrk gjgk .

induced by group multiplication.

Remarks:
https://youtu.be/3QjW40hhVag (3min) (1)

Now we can write group multiplication as

ggj =

|G|∑
k=1

gk R(g)kj ,

where R(g)kj encodes the group table: For g and j �xed, R(g)kj = 1 for exactly one value
of k and it vanishes for all others. R de�nes a representation of G on A(G), the so-called
regular representation:

https://youtu.be/xgF-ifxOsgg (4min) (2)

Example:

regular rep R of S3 https://youtu.be/Hbd2obSIQ1g (5min) (3)

Determine with the same choice of basis as in the video.

Theorem 7. The regular representation R contains all irreps of G, and the multiplicity
of irrep Γj is given by its dimension dj,

R =

p⊕
j=1

dj Γj
(
p = number of non-equivalent

irreducible representations

)
.

https://youtu.be/3QjW40hhVag
https://youtu.be/xgF-ifxOsgg
https://youtu.be/Hbd2obSIQ1g


Remark: Hence, there exists a regular matrix S such that

S−1R(g)S =



1
Γ2(g)

. . .

Γ2(g)
. . .

Γp(g)
. . .

Γp(g)


.

︸ ︷︷ ︸
d2 blocks

. . . ︸ ︷︷ ︸
dp blocks

Proof:
https://youtu.be/-QPH0cyBLpc (4min) (4)

Corollary. We have

p∑
j=1

d2
j = |G|.

Show this!

2.8 Product representations and Clebsch-Gordan coe�cients

De�nition: (product representation)
For representations Γµ : G → GL(U) and Γν : G → GL(V ) we de�ne the product
representation Γµ⊗ν : G→ GL(U ⊗ V ) by

Γµ⊗ν(g) = Γµ(g)⊗ Γν(g) ∀ g ∈ G .
Remarks:

1. Γµ⊗ν is a representation:

https://youtu.be/s8aENniin5Y (3min) (5)

2. For the characters we have

χµ⊗ν(g) = tr Γµ⊗ν(g) = tr
(
Γµ(g)⊗ Γν(g)

)
= tr Γµ(g) tr Γν(g) = χµ(g)χν(g) .

3. Even for irreducible Γµ and Γν the product representation is in general reducible,

Γµ ⊗ Γν =
⊕
λ

aλΓ
λ with dµdν =

∑
λ

aλdλ .

According to character orthogonality the multiplicities are

aλ =
1

|G|
∑
c

nc χλc χ
µ
cχ

ν
c .

Example: Z2
∼= {e, P} has two one-dimensional irreps. Character table:

e P
χ1 = Γ1 1 1
χ2 = Γ2 1 −1

Construct the regular rep R.
Reduce Γ = R⊗R to a direct sum of irreps.

https://youtu.be/-QPH0cyBLpc
https://youtu.be/s8aENniin5Y


Clebsch-Gordan coe�cients. In our live session we will go through some awkward
looking but frequently used notation in the context of the basis change from a product
basis to basis in which subsets of the basis vectors span irreducible subspaces.

Recap: Tensor products

Let U and V be vector spaces with bases {ui} and {vj}, respectively, and let W = U ⊗V
with basis {wk}, where wk = ui ⊗ vj. Further let A : U → U and B : V → V be linear
maps. Then D := A⊗B is the linear map W → W with

Dwk = Aui ⊗Bvj , where k = (i, j) ,

by linearity extended to arbitrary w ∈ W , i.e. for w =
∑

k αkwk =
∑

ij αijui⊗ vj we have

Dw =
∑
i,j

αij Aui ⊗Bvj .

In matrix components:

Aui =
∑
i′

ui′Ai′i , Bvj =
∑
j′

vj′Bj′j and

Dwk =
∑
k′

wk′Dk′k =
∑
i′j′

(ui′ ⊗ vj)Ai′iBj′j ,

i.e. Dk′k ≡ Di′j′ij = Ai′iBj′j. If everything is �nite-dimensional then

trD =
∑
k

Dkk =
∑
i,j

AiiBjj = trA · trB = tr(A⊗B) .

Scalar products on U and V induce a scalar product on W by

〈wk|wk′〉 = 〈ui|ui′〉U 〈vj|vj′〉V ,

again extended by (sesqui-)linearity.
If {ui} and {vj} are ONB with respect to 〈 | 〉U and 〈 | 〉V , then {wk} is also orthonormal,

〈wk|wk′〉 = δii′δjj′ = δkk′ .

https://www.math.uni-tuebingen.de/de/forschung/maphy/lehre/ss-2021/grar/dateien/clebsch-gordan.pdf/@@download/file/clebsch-gordan.pdf
https://www.math.uni-tuebingen.de/de/forschung/maphy/lehre/ss-2021/grar/dateien/clebsch-gordan.pdf/@@download/file/clebsch-gordan.pdf
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In general we can decompose W = U ⊗ V into a direct sum of (under G) invariant
irreducible subspaces W λ

α , with dim(W λ
α ) = dλ. The index α = 1, . . . , aλ distinguishes

di�erent subspaces carrying the same irreducible representation, i.e. ∃ U , such that

U−1 Γµ⊗ν U =



Γ1

. . .

Γ1

. . .

Γλ

. . .

Γλ

. . .



.

︸ ︷︷ ︸
a1 blocks

. . . ︸ ︷︷ ︸
aλ blocks

Thus U provides the change of basis from the {wk} to some new basis {wλα`} in which the
representation matrices are block-diagonal. Here ` = 1, . . . , dλ numbers the absis vectors
of W λ

α .

By choosing ONBs on both sides U becomes unitary.

Remark: In general U is highly non-unique.

The rest is essentially notation � somewhat nasty, but widely used, and sometimes even
useful.

With k = (i, j) and in so-called Dirac notation, one writes

|wλα`〉 =
∑
ij

|wij〉 〈i, j(µ, ν)α, λ, `〉︸ ︷︷ ︸
Clebsch-Gordan coe�cients

. (∗)

The Clebsch-Gordan coe�cients are matrix elements of U , with

(i, j): row index (old basis),

(α, λ, `): column index (new basis),

(µ, ν): �x. (Tells us which product is decomposed.)



The inverse of (∗) is

|wij〉 =
∑
αλ`

|wλα`〉〈α, λ, `(µ, ν)i, j〉 ,

(this de�nes 〈α, λ, `(µ, ν)i, j〉)
and with U unitary we have 〈α, λ, `(µ, ν)i, j〉 = 〈i, j(µ, ν)α, λ, `〉

• The CG coe�cients satisfy �orthonormality and completeness relations�∑
αλ`

〈i′, j′(µ, ν)α, λ, `〉〈α, λ, `(µ, ν)i, j〉 = δi′iδj′j and∑
ij

〈α′, λ′, `′(µ, ν)i, j〉〈i, j(µ, ν)α, λ, `〉 = δα′αδλ′λδ`′` ,

in matrix notation U †U = 1 = UU †.

• simpli�ed notation

� |i, j〉 := |wij〉 and |α, λ, `〉 := |wλα`〉
� Einstein summation convention (sum over repeated indices)

� 〈i, j(µ, ν)α, λ, `〉 = 〈i, j|α, λ, `〉

Then we can write

Γµ⊗ν(g)|i, j〉 = |i′, j′〉Γµ(g)i′iΓ
ν(g)j′j and

Γµ⊗ν(g)|α, λ, `〉 = |α, λ, `′〉Γλ(g)`′` ,

and conclude

〈α′, λ′, `′|Γµ⊗ν(g)|α, λ, `〉 = 〈α′, λ′, `′|α, λ, `′′〉Γλ(g)`′′` = δα′αδλ′λδ`′`′′Γ
λ(g)`′′`

= δα′αδλ′λΓ
λ(g)`′`

=
(∗)
〈α′, λ′, `′|Γµ⊗ν(g)|i, j〉〈i, j|α, λ, `〉

= 〈α′, λ′, `′|i′, j′〉Γµ(g)i′iΓ
ν(g)j′j〈i, j|α, λ, `〉 .

(relation between elements of the representation matrices in the old and the new
basis)



Example:
In quantum mechanics (the spin degree of freedom of) a spin-1

2
particle is described by a

vector in C2. The basis vectors

|↑〉 :=

(
1
0

)
and |↓〉 :=

(
0
1

)
transform in a two-dimensional representation of SU(2), namely Γ2(g) = g ∀ g ∈ SU(2).
Consider two spin-1

2
particles: C2 ⊗ C2 ∼= C4, spanned by the product basis

|↑↑〉 := |↑〉 ⊗ |↑〉 , |↑↓〉 := |↑〉 ⊗ |↓〉 , |↓↑〉 := |↓〉 ⊗ |↑〉 , |↓↓〉 := |↓〉 ⊗ |↓〉 ,

transforms in Γ2⊗2. De�ne a new basis,

|0, 0〉 :=
|↑↓〉 − |↓↑〉√

2
, |1, 1〉 := |↑↑〉 , |1, 0〉 :=

|↑↓〉+ |↓↑〉√
2

, |1,−1〉 := |↓↓〉 .

In the exercises we show:

• |0, 0〉 transforms in the spin-0 representation of SU(2) (one-dimensional � trivial
representation), and

• |1,m〉, m = −1, 0, 1, transform in the spin-1 representation (three-dimensional) of
SU(2).

Clebsch-Gordan coe�cients:

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉
〈0, 0| 0 1√

2
− 1√

2
0

〈1, 1| 1 0 0 0

〈1, 0| 0 1√
2

1√
2

0

〈1,−1| 0 0 0 1

i.e. e.g. 〈1, 0|↑↓〉 = 1√
2
.

In general one labels the unitary irreducible representations of SU(2) by their so-called
spin quantum number s ∈ 1

2
N0; the correspong representation has dimension 2s+ 1.
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3 Applications in quantum mechanics

3.1 Expansion in irreducible basis functions and selections rules

Setting:

L2-spaces & unitary operators https://youtu.be/5yJbnMbWZK4 (2min) (1)

Lemma 8. Let G be a (�nite) group of unitary linear operators V → V , A ∈ G,1 and let
ψν1 , . . . , ψ

ν
dν

be functions that transform in the unitary irreducible representation Γν (with
dim(Γν) = dν), i.e.

Aψνα =
dν∑
β=1

ψνβ Γν(A)βα .

Then ∃Cν ∈ C such that 〈ψνα|ψ
µ
β〉 = Cν δνµ δαβ.

Proof:
https://youtu.be/Ru30m0wiOTM (7min) (2)

Remarks:
https://youtu.be/i-KGixakDDM (3min) (3)

Have you heard the term selection rule before? If not, never mind. If yes, in which
context? Let's speak about it in the live session.

3.2 Invariance of the Hamiltonian and degeneracies

A special role is played by the Hamiltonian H : V → V (a linear self-adjoint operator) of
a quantum mechanical system. In particular, its eigenvalues are the possible energy levels
in which we can �nd the system.

Let H be the Hamiltonian of a quantum mechanical system and let A be a unitary
operator. If

AH = HA ,

we say that A commutes with the Hamiltonian or that A leaves H invariant.

The set of all symmetry operations (realised by unitary operators) that leave H invariant
forms a group G, the symmetry group of H. Why is this a group?

Every eigenspace of H, say {ψ ∈ V : Hψ = Eψ}, carries a representation of the symmetry
group G:

https://youtu.be/t0_HAXTVgmg (2min) (4)

1Alternatively, view the operators A as unitary representation of a group G on V .

https://youtu.be/5yJbnMbWZK4
https://youtu.be/Ru30m0wiOTM
https://youtu.be/i-KGixakDDM
https://youtu.be/t0_HAXTVgmg


This representation can, in principle, be reducible or irreducible; typically it is irreducible:
Consider now an invariant subspace with Hψ ∈ U ∀ψ ∈ U . Then:
I If U is irreducible then all ψ ∈ U have the same energy:

https://youtu.be/hdODKxaR4Ec (3min) (5)

I States transforming in di�erent irreps can have di�erent energies � at least,
symmetry does not force them to have the same energy:

https://youtu.be/er1ZQ3a8_38 (2min) (6)

If states transforming in di�erent irreps still have the same energy, we speak about �acci-
dental degeneracy�. Possible reasons:

I �Fine-tuning� of one or several parameters in H (unlikely).

I We haven't correctly identi�ed the full symmetry group, i.e. we have overlooked
some symmetry.

Conclusions:

I Degenerate states to a given energy typically transform in an irrep of the symmetry
group of H, i.e. they can be classi�ed by irreps.

I number of degenerate states = dimension of the irrep

Example (& outlook): Hydrogen atom

https://youtu.be/fYfsXfVIh3E (8min) (7)

https://youtu.be/hdODKxaR4Ec
https://youtu.be/er1ZQ3a8_38
https://youtu.be/fYfsXfVIh3E
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3.3 Perturbation theory and lifting of degeneracies

Setting: Hamiltonian is a sum of a (known) term H0 and a (small) perturbation H ′,

H = H0 +H ′ .

Let G be the symmetry group of H0. Two possibilities:

1. H ′ is also invariant under G.

2. H ′ is only invariant under a subgroup B ⊂ G.

In case 1 the spectra of H0 and of H look similar (same multiplicities).

Case 2 (symmetry breaking) typically leads to a splitting of energy levels:

I Eigenstates of H transform in irreps of B.

I Degenerate eigenstates of H0 transform in irreps of G.

I Eigenspaces of H0 carry reps of B, in general reducible.
States transforming in di�erent irreps of B, in general, have di�erent energies.
States transforming in the same irrep of B, are still degenerate.

https://youtu.be/_IDScHV5Jps (3min) (1)

Examples:

1. Hydrogen atom as in Section 3.2.
Adding a small radially symmetric potential V (r) (but not 1

r
) breaks the O(4)-

symmetry to O(3). Each energy level splits into n levels with di�erent `. Each new
level is still (2`+1)-fold degenerate.

https://youtu.be/y_tIHpehjcY (2min) (2)

2. Fine structure of hydrogen.
I Take electron spin into account: instead of L2(R3) consider L2(R3)⊗ C2.

I Intermediate step: Consider H ⊗ 12. States which so far transformed in irrep
Γ2`+1 of O(3), now transform in rep Γ2`+1 ⊗ Γ2 of SU(2), but energies are
unchanged, only the degeneracy is doubled.

Wait, why SU(2)? https://youtu.be/2dFq2LwrrMU (4min) (3)

I Now add the perturbation H ′, containing spin-dependent terms (spin-orbit
coupling), but still invariant under SU(2). Splittings follow from

Γ2`+1 ⊗ Γ2 = Γ2` ⊕ Γ2`+2 .

https://youtu.be/p1SZsPfGjEM (7min)
(4)

https://youtu.be/_IDScHV5Jps
https://youtu.be/y_tIHpehjcY
https://youtu.be/2dFq2LwrrMU
https://youtu.be/p1SZsPfGjEM


4 Expansion into irreducible basis vectors

4.1 Projection operators onto irreducible bases

Recall Lemma 8 and the following remark about constructing irreducible invariant sub-
spaces. Let's elaborate on this idea. Let U be a (completely reducible ) representation
(e.g. by unitary operators) on V and let eν1, . . . , e

ν
dν
∈ V be functions/vectors that trans-

form in the unitary irreducible representation Γν (with dim(Γν) = dν). We can expand
every ψ ∈ V into such basis vectors, i.e.

ψ =
∑
µ

dµ∑
β=1

cµβ e
µ
β ,

with expansion coe�cients cµβ ∈ C. Let's apply U(g):

https://youtu.be/ZA1qsZNHl5M (6min) (5)

This motivates the following de�nition.

De�nition: (generalised projection operators)
Let G be a group, U a representation, Γµ an irreducible representation, dim Γµ = dµ. We
call

P µ
jk =

dµ
|G|

∑
g∈G

[Γµ(g)−1]jk U(g)

generalised projection operator.

Remark: In the following Γ will always be unitary, i.e.

[Γµ(g)−1]jk = [Γµ(g)†]jk = Γµ(g)kj (cf. above).

We will study the properties of these operators on the next instruction sheet.

https://youtu.be/ZA1qsZNHl5M
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4.1 Projection operators onto irreducible bases (cont.)

Theorem 9. (Properties of P µ
jk) With the above de�nitions we have:

(i) For �xed ψ ∈ V and for �xed µ and j the dµ vectors P µ
jkψ, k = 1, . . . , dµ, either all

vanish or they transform in irrep Γµ, i.e. U(g)P µ
jk =

∑̀
P µ
j` Γν(g)`k.

(ii) P µ
jiP

ν
`k = δµνδjkP

µ
`i.

(iii) P µ
j = P µ

jj is a projection operator.

(iv) P µ =
∑

j P
µ
j is a projection operator onto the invariant subspace Uµ containing

all vectors transforming in the irreducible representation Γµ.

(v)
∑

µ P
µ = 1 if V completely reducible (here always assumed).

(vi) U(g) =
∑
µ

∑
j,k

Γµ(g)kjP
µ
jk (inversion of de�nition).

Proof:

(i) & (ii) https://youtu.be/Xenr0VXpvcM (4min) (1)

(iii)�(v) https://youtu.be/05OMW7Cao8w (2min) (2)

(vi) https://youtu.be/M-4KmZHsM0w (2min) (3)

Examples:

1. Reduction of span(φ1, φ2, φ3) from Section 2.4.1 (invariant under D3
∼= S3).

S3 has two 1-dimensional and one 2-dimensional irrep (Γ1,Γ2,Γ3).

generalised projection operators https://youtu.be/laouieOnL4A (6min) (4)

Apply to some vector, say φ1:

µ = 1, 2 https://youtu.be/nMMHx7_zs_w (3min) (5)

µ = 3 https://youtu.be/8sDomkziGvA (5min) (6)

2. Reducing a product representation:

https://youtu.be/79QuhXEDkGY (3min) (7)

https://youtu.be/Xenr0VXpvcM
https://youtu.be/05OMW7Cao8w
https://youtu.be/M-4KmZHsM0w
https://youtu.be/laouieOnL4A
https://youtu.be/nMMHx7_zs_w
https://youtu.be/8sDomkziGvA
https://youtu.be/79QuhXEDkGY


4.2 Irreducible operators and the Wigner-Eckart Theorem

De�nition: (irreducible operators)
Let G be a group, U : G → GL(V ) a representation, and Γµ a unitary irreducible
representation with dim Γµ = dµ. A set of linear operators Oµ

i : V → V , i = 1, . . . , dµ,
which transform under G as follows,

U(g)Oµ
i U(g)−1 =

dµ∑
j=1

Oµ
j Γµ(g)ji ,

is called a set of irreducible operators corresponding to irrep Γµ.
(The Oµ

i are also called irreducible tensors or irreducible tensor operators).

Remarks:

1. The de�nition makes sense:

https://youtu.be/KEr1n5iC394 (4min) (8)

2. Special case: If Γµ is the trivial representation then the operator Oµ (no index i,
since dµ = 1) commutes with U(g) ∀ g ∈ G, cf. Section 3.2.

3. IfOµ
i , i = 1, . . . , dµ, are irreducible operators and if |eνj 〉, j = 1, . . . , dν , are irreducible

basis vectors, then the vectors Oµ
i |eνj 〉 transform in the product rep Γµ⊗ν .

Show this!
We can reduce this product representation (cf. Section 2.8) and expand the vectors
Oµ
i |eνj 〉 in the irreducible basis {|wλα`〉},

Oµ
i |eνj 〉 =

∑
αλ`

|wλα`〉〈α, λ, `(µ, ν)i, j〉 . (∗)

This leads to. . .

Theorem 10. (Wigner-Eckart)
Let Oµ

i be irreducible operators and let |eνj 〉 be irreducible vectors. Then

〈eλ` |O
µ
i |eνj 〉 =

∑
α

〈α, λ, `(µ, ν)i, j〉 〈λ‖Oµ‖ν〉α

with the so-called reduced matrix element (which isn't a matrix element. . . )

〈λ‖Oµ‖ν〉α =
1

dλ

∑
k

〈eλk |wλαk〉 .

Can you prove this, using (∗) and the proof of Lemma 8?

https://youtu.be/KEr1n5iC394
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4.2 Irreducible operators and the Wigner-Eckart Theorem (cont.)

Remarks (on Wigner-Eckart):

https://youtu.be/DnBKfkmI4R8 (4min) (1)

Example: time-dependent perturbation theory for dipole radiation

https://youtu.be/iTP7E2z54F8 (8min) (2)

4.3 Left ideals and idempotents

The generalised projection operators allow us to decompose reducible reps into sums of
irreps. To this end we already have to know the irreps.

Question: How to construct the irreps?

Idea: Reduce the regular rep (see Instruction 7), as it contains all irreps Γµ

Recall: Carrier space is the group algebra A(G) = span(g1, . . . , g|G|).

De�nition: (left ideal, minimal left ideal)
A subspace L ⊆ A(G) that is invariant under left multiplication is called left ideal, i.e.

r ∈ L and q ∈ A(G) ⇒ qr ∈ L .
A left ideal L is called minimal if it does not contain any non-trivial left ideal K ⊂ L.

Remarks:

1. One similarly de�nes right ideals and two-sided ideals. (We use only left ideals.)

2. L is a left ideal ⇔ L is an invariant subspace.

3. L is a minimal left ideal ⇔ L is an irreducible invariant subspace.

Show remarks 2 and 3.

Denote by P µ
α the projection operator onto the minimal left ideal Lµα, i.e. P

µ
αA(G) = Lµα.

As before µ labels the non-equivalent irreps, and α = 1, . . . , dµ. Demand the following. . .

. . . properties of P µ
α :

(i) P µ
α r ∈ Lµα ∀ r ∈ A(G).

(ii) If q ∈ Lµα then P µ
α q = q.

(iii) P µ
αP

ν
β = δµνδαβP

µ
α .

It then follows that

(iv) P µ
α q = qP µ

α ∀ q ∈ A(G).

Proof: https://youtu.be/ebET50quvPk (3min) (3)

https://youtu.be/DnBKfkmI4R8
https://youtu.be/iTP7E2z54F8
https://youtu.be/ebET50quvPk


We de�ne Lµ =
⊕
α

Lµα and �rst construct the projection operator P µ onto Lµ:

https://youtu.be/YLY-j-LNkH8 (4min) (4)

Lemma 11. P µ is given by right multiplication with eµ, i.e. P
µq = qeµ ∀ q ∈ A(G).

Remarks:

1. P µ is linear.

2. eµeν = δµνeµ � cf. property (iii). Show this.

3. With e =
∑
µ,α

eµα this also works for projections to minimal left ideals, P µ
α q = qeµα.

De�nition: (idempotents)
An element eµ ∈ A(G) that satis�es e2

µ = eµ is called (an) idempotent. If e2
µ = ξµeµ for

some non-zero ξµ ∈ C then we call eµ essentially idempotent.

Remarks:

1. We say the idempotent eµ generates the left ideal Lµ, i.e. Lµ = {qeµ : q ∈ A(G)} .
2. An idempotent is called primitive, if it generates a minimal left ideal. Otherwise it

can be written as a sum e1 + e2 of two non-zero idempotents with e1e2 = 0 = e2e1.

Theorem 12.
The idempotent eµ is primitive. ⇔ For every q ∈ A(G) ∃λq ∈ C s.t. eµqeµ = λqeµ.

Proof:
https://youtu.be/jrqF23SpENg (10min) (5)

Theorem 13. The left ideals generated by two primitive idempotents, e1 and e2, carry
equivalent irreps Γ1 and Γ2 i� e1qe2 6= 0 for at least one q ∈ A(G).

Proof:
https://youtu.be/Wy3NS9IE_oY (9min) (6)

Example: The primitive idempotent

e1 =
1

|G|

|G|∑
j=1

gj

generates the one-dimensional left ideal L1, which carries the trivial representation.
Show this!

https://youtu.be/YLY-j-LNkH8
https://youtu.be/jrqF23SpENg
https://youtu.be/Wy3NS9IE_oY
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4.3.1 Dimensions and characters of the irreducible representations

Theorem 14. Let G be a group with group algebra A(G), and let

eµ =
∑
g∈G

ag g

be a primitive idempotent with corresponding left ideal Lµ = A(G)eµ, carrying irrep Γµ

with dim Γµ = dµ. Then ∀h ∈ G

χµ(h) = tr Γµ(h) =
|G|
nc

∑
g∈c

ag

where c is the conjugacy class of h with nc elements.

Proof:
https://youtu.be/iSiwLsOS8w8 (12min) (1)

5 Representations of the symmetric group and Young diagrams

5.1 One-dimensional irreps and associate representations of Sn

The alternating group An is the group of even permutations of {1, 2, . . . , n} (i.e. each
element is the product of an even number of transpositions). An is a normal subgroup of
Sn, with quotient group Sn/An ∼= Z2.

⇒ Sn has two one-dimensional representations, induced by the by the representations of
Z2 (cf. Problems 8, 14 & 15):

Γs(p) = 1 ∀ p ∈ Sn (trivial representation) and

Γa(p) = sgn(p) =

{
1 for p even
−1 for p odd

.

sgn(p) is called sign or parity of the permutation p.

Later we will see: There are no other one-dimensional representations of Sn.

Lemma 15. The symmetriser s =
∑
p∈Sn

p and the anti-symmetriser a =
∑
p∈Sn

sgn(p)p are

essentially idempotent and primitive.

Prove this!

Corresponding irreps: https://youtu.be/syAbXy1vExo (4min) (2)

Show the non-equivalence of these two irreps using Theorem 13.

https://youtu.be/iSiwLsOS8w8
https://youtu.be/syAbXy1vExo


De�nition: (associate representations)

For a representation Γλ of Sn with dimension dλ, we call Γλ and Γ̃λ = Γλ ⊗ Γa associate
representations.

Remarks:

1. Γs and Γa are associate to each other.

2. dim( Γ̃λ ) = dλ

3. Γ̃λ is irreducible ⇔ Γλ is irreducible.
Why? Recall the irreducibility criterion from Instruction 6.

4. If χλ(p) = 0 for all odd p, then Γ̃λ is equivalent to Γλ (why?), and Γλ is called
self-associate. Otherwise they are non-equivalent.

Theorem 16. Let Γλ and Γµ be irreps of Sn. Then

(i) Γλ ⊗ Γµ contains Γs exactly once (not at all),
if Γλ and Γµ are equivalent (non-equivalent).

(ii) Γλ ⊗ Γµ contains Γa exactly once (not at all),
if Γλ and Γµ are associate (not associate).

Proof:
https://youtu.be/OqKaJx422ng (7min) (3)

5.1.1 Some more birdtracks

In birdtrack notation we denote symmetrisers and anti-symmetrisers by open and solid
bars, respectively, i.e.

1
n!
s = 1

n!

∑
p∈Sn

p = ... ...
and 1

n!
a = 1

n!

∑
p∈Sn

sgn(p) p = ... ...
.

Note that we include a factor of 1
n!
in the de�nition of bars over n lines. For instance,

=
1

2

(
+

)
and

=
1

3!

(
− − − + +

)
.

(4)

Notice that in birdtrack notation the sign of a permutation, (−1)K , is determined by the
number K of line crossings; if more than two lines cross in a point, one should slightly

perturb the diagram before counting, e.g.  (K=3).

Expand and as in (4).

https://youtu.be/OqKaJx422ng


We also use the corresponding notation for partial (anti-)symmetrisation over a subset of
lines, e.g.

=
1

2

(
+

)
or

=
1

2

(
−

)
=

1

2

(
−

)
.

It follows directly from the de�nition of S and A that when intertwining any two lines S
remains invariant and A changes by a factor of (−1), i.e.

... ...
= ... ...

and ... ...
= − ... ...

.

Explain why this implies that whenever two (or more) lines connect a symmetriser to an
anti-symmetrizer the whole expression vanishes, e.g.

= 0 . (5)

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on
the r.h.s. of

... ... =
1

n

 ... ... +
... ... + . . . +

... ...


we have sorted the terms according to where the last line is mapped � to the nth, to the

(n−1)th, . . . , to the �rst line line. Multiplying with ... ... from the left and disentangling

lines we obtain the compact relation

... ... =
1

n

 ... ... + (n− 1)
... ... ...

 . (6)

Derive the corresponding recursion relation for anti-symmetrisers.
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5.2 Young diagrams and Young tableaux

De�nition: (partition, Young diagram)
A partition λ = (λ1, λ2, . . . , λr) of a natural number n is a (�nite) sequence of positive
integers with

r∑
i=1

λi = n and λi ≥ λi+1 .

Let λ and µ be two partitions for the same n.

(i) We say that λ and µ are equal, if λi = µi ∀ i.
(ii) We say λ > µ if the �rst non-vanishing term of the sequence λi − µi is positive.

Graphically, a partition can be represented by a Young diagram:

https://youtu.be/zSsEYZqiCcM (4min) (1)

Each partition corresponds to a conjugacy class of Sn and vice versa:

https://youtu.be/JMiaRRXWxaU (2min) (2)

Since the number of Young diagrams with n boxes is equal to the number of conjugacy
classes of Sn, it is also equal to the number of non-equivalent irreps of Sn.

Further de�nitions: Young tableau, normal Young tableau, and standard Young tableau:

https://youtu.be/3oOSaYheyRg (3min) (3)

The normal Young tableau corresponding to partition λ we denote by Θλ. We obtain an
arbitrary tableau from Θλ by a permutation p of the numbers in the boxes:

Θp
λ = pΘλ .

This implies qΘp
λ = Θqp

λ . Example:

Θ
(23)

= 1 3
2 4

since Θ(2,2) = Θ = 1 2
3 4

Write down all standard tableaux for S4.

https://youtu.be/zSsEYZqiCcM
https://youtu.be/JMiaRRXWxaU
https://youtu.be/3oOSaYheyRg


5.3 Young operators

De�nitions: Let Θp
λ be a Young tableau.

A horizontal permutation hpλ permutes only numbers within rows of Θp
λ.

A vertical permutation vpλ permutes only numbers within columns of Θp
λ.

Furthermore, we de�ne

the (row-)symmetriser spλ =
∑
{hpλ}

hpλ ,

the (column-)anti-symmetriser apλ =
∑
{vpλ}

sgn(vpλ) v
p
λ and

the Young operator
(or irreducible symmetriser)

epλ = spλ a
p
λ =

∑
{hpλ}

∑
{vpλ}

sgn(vpλ)h
p
λ v

p
λ .

Example: standard tableaux for S3

https://youtu.be/pqOOq2mWiLc (6min) (4)

Expressed in birdtracks:

https://youtu.be/Fl9Ol9xUrdE (3min) (5)

Verify that e is essentially idempotent. Try both, birdtracks and cycle notation.

Observations:

1. For each tableau Θp
λ the horizontal and the vertical permutations, {hpλ} and {v

p
λ},

form subgroups of Sn, with {hpλ} ∩ {v
p
λ} = {e}.

We obtain the subgroups for Θp
λ from those for Θλ by conjugation with p, hence

epλ = p eλ p
−1.

2. spλ and apλ are (total) symmetriser and anti-symmetriser of the corresponding sub-
group, in the sense that

spλh
p
λ = hpλs

p
λ = spλ and apλv

p
λ = vpλa

p
λ = sgn(vpλ)a

p
λ .

3. spλ and apλ are essentially idempotent, but in general not primitive.
The epλ are essentially idempotent and primitive (here for S3, later for Sn).
Can you show primitivity for e ?

4. e = s and e = a generate the two one-dimensional irreps of S3 (cf. Section 5.1).

e generates a two-dimensional (minimal) left ideal of A(S3):

https://youtu.be/gX6Q7HzJzSE (6min) (6)

⇒ The Young operators of the normal Young tableaux generate all irreps of S3.

5. Determine the (minimal) left ideal generated by e
(23)

.

6. Verify that e = 1
6
e + 1

3
e + 1

3
e

(23)
+ 1

6
e and conclude that the regular rep of S3

is completely reduced by the Young operators of the standard Young tableaux.

https://youtu.be/pqOOq2mWiLc
https://youtu.be/Fl9Ol9xUrdE
https://youtu.be/gX6Q7HzJzSE


Universität Tübingen, Fachbereich Mathematik Sommersemester 2021
Dr. Stefan Keppeler

Groups and Representations

Instruction 14 for the preparation of the lecture on 14 June 2021

5.4 Irreducible representations of Sn

Theorem 17. Let λ 6= µ be partitions of n ∈ N.
(i) The Young operators epλ are essentially idempotent, i.e. (epλ)

2 = ηλe
p
λ with ηλ 6= 0,

(ii) the 1
ηλ
epλ are primitive idempotents.

(iii) The irreducible representations generated by eλ and eµ are not equivalent.

(iv) The irreducible representations generated by eλ and epλ are equivalent.

Proof: First notice that no two terms in

eλ =
∑
{hλ}

∑
{vλ}

sgn(vλ)hλvλ

are proportional to the same permutation. Why? In particular, eλ 6= 0 and

eλ = e+ terms proportional to p ∈ Sn\{e} .

In birdtracks we have:

epλ =

... ...

...

...

...

...

...

... ...

...

...
...

...

... ...

...

... ...

...

...

https://youtu.be/0e-rjjzijJw (2min)

(1)

With this we can prove all four statements:

(iii) https://youtu.be/Kq_Z6mnpbXE (7min)

(i) https://youtu.be/wEVE7g9w74Y (8min)

(ii) & (iv) https://youtu.be/wrh1ILmhthE (4min)

https://youtu.be/0e-rjjzijJw
https://youtu.be/Kq_Z6mnpbXE
https://youtu.be/wEVE7g9w74Y
https://youtu.be/wrh1ILmhthE


Remark: Unfortunately, for n ≥ 5 the Young operators for the standard tableaux no
longer satisfy epλe

q
λ = 0 ∀ p 6= q (they still satisfy epλe

q
µ = 0 ∀λ 6= µ, see (iii) above).

However, the ideals generated by the Young operators of the standard tableaux are still
linearly independent (see exercises) and

A(Sn) =
⊕

{ standardtableaux
Θpλ}
A(Sn)epλ .

(without proof). In particular, this implies that dim
(
A(Sn)epλ

)
is given by the number of

standard tableaux for the partition λ.

5.5 Calculating characters using Young diagrams

The dimension dλ of irrep Γλ is given by the number of standard tableaux for the parti-
tion λ. The hook length formula (which we won't prove) is very convenient:

dλ =
n!∏
i,j hij

. https://youtu.be/DxPI8QOlh_Q (3min) (2)

Determine the dimensions of all irreps of S4.

Before calculating characters we introduce the notion of a skew hook:

https://youtu.be/E_ahyAWIhp0 (2min) (3)

Here's a recipe (without proof) for calculating characters. Let c be a conjugacy class of
Sn with disjoint cycles of lengths a1, a2, . . . , aq. Recursively determine the character χλc
as follows:

I Choose any cycle of c, say with length ai.

I Denote by c̄ the class of Sn−ai , obtained by removing the cycle ai from c.

I For the Young diagram Θλ determine all skew hooks of length ai and denote the
Young diagram(s) of Sn−ai , obtained by removing such a skew hook by Θλ̄. Then

χλc =
∑
λ̄

±χλ̄c̄

with �+� for positive skew hooks and �−� for negative skew hooks.

I Iterate this procedure.

I If no box of the Young diagram remains then χλ̄=0
( ) = 1.

(Don't forget the sign of the last skew hook removed!)

I If there is no skew hook of length ai then χ
λ
c = 0.

Example: https://youtu.be/XnSE5E6m6fg (7min) (4)

Determine the characters of the irrep of S3 corresponding to .

Explain how we recover the number of standard tableaux when recursively determining
the character of the identity.

https://youtu.be/DxPI8QOlh_Q
https://youtu.be/E_ahyAWIhp0
https://youtu.be/XnSE5E6m6fg
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6 Lie groups

When speaking about in�nite groups we will combine the notion of a group with notions
from others areas of mathematics. There will be precise de�nitions using notions like
�topological space�, �connectedness� or �di�erentiable manifold�. However, we will not
introduce all these notions and concepts in detail. If you are familiar with these notions
� �ne. If not, don't panic! Some of the subtelties will not be relevant for the cases we
are interested in, so we will gloss over them. Aspects which are important in our context
will be introduced and discussed carefully, such that no prior knowledge beyond, say,
multivariable calculus/analysis in Rn will be required.

6.1 Topological groups

De�nition: (topological group)
A group (G, ◦) is called topological group if

(i) G is a topological space,

(ii) the map G 3 g 7→ g−1 ∈ G is continuous, and

(iii) the map G×G 3 (g, h) 7→ g ◦ h ∈ G is continuous.

Remark: Unless otherwise stated, our topology will be the standard topology on Rn or
Cn, and the induced topology on subspaces.

Examples:

GL(n), O(n), U(n) etc. https://youtu.be/0b_GhknIuNY (3min) (1)

De�nition: (isomomorphism)
Two topological groups G and H are called isomorphic, if there exists a bijective map
f : G→ H, which is both, an isomorphism of groups, and a homeomorphism of topological
spaces (i.e. f is continuous and f−1 is continuous).

(Non-)Example:
https://youtu.be/tDCZNBbqYRk (7min) (2)

De�nition: (homogeneous space)
A topological space X is called homogeneous, if for every pair x, y ∈ X there exists a
homeomorphism f : X → X s.t. f(x) = y.

Remark: Every topological group G is homogeneous. This is nice when studying local
properties.

https://youtu.be/CYu-XpNKu3Q (2min) (3)

https://youtu.be/0b_GhknIuNY
https://youtu.be/tDCZNBbqYRk
https://youtu.be/CYu-XpNKu3Q


Interesting global properties are compactness and connectedness.

Examples (compactness):

1. O(n) is compact:

https://youtu.be/8pFew9Cp-10 (3min) (4)

2. O(1, 1) is not compact:

https://youtu.be/zvWRGgcJVpY (2min) (5)

3. GL(n,R) is not compact. Why?

De�nition: (connected component)
The connected component of g ∈ G is the union of all connected sets that contain g.

Remarks:

1. A connected component is actually connected.

2. Let G0 ⊆ G be the connected component of the identity e.
Show that G0 is a subgroup of G.
G0 is a normal subgroup, and the quotient group G/G0 is totally disconnected:

https://youtu.be/-_mTHYztXUw (4min) (6)

Examples:

1. SU(2) is (simply) connected, since with the parametrisation of Problem 19,

SU(2) 3 g =

(
u −v
v u

)
,

|u|2 + |v|2 = 1 ⇔ (Reu)2 + (Imu)2 + (Re v)2 + (Im v)2 = 1 ,

SU(2) is homeomorphic to S3, and spheres Sn with n ≥ 2 are (simply) connected.

2. O(n) is not connected. Why?

6.2 Example: SO(2)

Before discussing Lie groups in general, let's look at an example, which illustrates some
of the basic ideas. We'll do this in our live session.

https://youtu.be/8pFew9Cp-10
https://youtu.be/zvWRGgcJVpY
https://youtu.be/-_mTHYztXUw
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6.3 Lie groups

De�nition: (Lie group)
A group (G, ◦) is called Lie group if

(i) G is an analytic manifold,

(ii) the map G 3 g 7→ g−1 ∈ G is analytic, and

(iii) the map G×G 3 (g, h) 7→ g ◦ h ∈ G is analytic.

Remarks:

1. An n-dimensional manifold M is something that locally looks like a piece of Rn:

https://youtu.be/HQMI050AEjw (3min) (1)

2. Locally, group elements are analytic functions of n parameters:

https://youtu.be/_VqV9uK76oo (3min) (2)

3. The so-called structure constants cjk` of the Lie group are determined by the group
law:

https://youtu.be/4mzmPRyOjgE (6min) (3)

Properties of the structure constants:

(i) For abelian groups cjk` = 0, since then f(x, y) = f(y, x).

(ii) cjk` = −cj`k
(iii)

∑
`(c

j
k`c

`
nm + cjn`c

`
mk + cjm`c

`
kn) = 0

The last identity follows from associativity of group multiplication by comparing
the third order terms in the coordinate expansions of g(hg̃) and (gh)g̃.

Examples: matrix Lie groups

1. GL(n,R) is a Lie group:

https://youtu.be/so7fTTzjsLo (4min) (4)

2. For GL(n,C) consider real and imaginary part of the matrix elements as coordinates
and argue as before (in terms of submanifolds of R2n2

).

3. For groups like O(n), U(n), SO(n) or SU(n) one �rst observes that they are closed
subgroups of GL(n,R) or GL(n,C), respectively. One can show that closed sub-
groups of Lie groups are Lie (sub-)groups. (Later we will study some of these more
explicitly.)

https://youtu.be/HQMI050AEjw
https://youtu.be/_VqV9uK76oo
https://youtu.be/4mzmPRyOjgE
https://youtu.be/so7fTTzjsLo


6.4 Lie algebras

De�nition: A Lie algebra g is a vector space over a �eld K (here mostly R, sometimes
C), with an operation

[·, ·] : g× g→ g

(X, Y ) 7→ [X, Y ]

called Lie bracket, which satis�es (∀ X, Y, Z ∈ g):

(i) [λX + µY, Z] = λ[X,Z] + µ[Y, Z] ∀ λ, µ ∈ K (linearity)

(ii) [X, Y ] = −[Y,X] (anti-symmetry)

(iii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi identity)

Remarks:
1. A Lie algebra is called commutative if [X, Y ] = 0 ∀ X, Y ∈ g.

2. One can show that the tangent space to a Lie group G at the identity is a Lie algebra g.

To this end consider curves g(t) in G with g(0) = e. Then the derivative (in a chart) at
t = 0 is a tangent vector.

For matrix Lie groups we can explicitly de�ne the Lie algebra elements, as matrices:

−iġ(0) := −i
dg

dt
(0) ∈ g .

The Lie bracket is now the matrix commutator (rather times (−i), see below)

[X, Y ] = XY − Y X .

The commutator is linear and anti-symmetric, the Jacobi identity can be veri�ed by direct
calculation.

It remains to show that X, Y ∈ g implies that also (−i)[X, Y ] ∈ g.

https://youtu.be/6VsahKnoDHY (8min) (5)

3. Choosing a basis {Xj} of g we have

[Xj, Xk] = i
∑
`

c`jkX`

with the structure constants c`jk of the Lie algebra (basis dependent).

The structure constants of the Lie algebra are equal to the structure constants of the
corresponding the Lie group (see Section 6.3) � supposing an appropriate choice of basis
and coordinates: As basis {Xj} for g choose the tangent vectors to the coordinate lines
in a chart U 3 e, i.e. for matrix Lie groups in an explicit parametrisation by taking
derivatives with respect to the parameters,

Xj = −iġ(0) with g(t) = ϕ−1(0, . . . , 0, xj = t, 0, . . . , 0) ,

hence Xj = −i
∂ϕ−1

∂xj
(0) .

In Section 6.3 we compared expansions of gh and hg, here we essentially expanded
hgh−1−g. Properties (ii) & (iii) of the structure constants of Section 6.3 now follow
from the Lie bracket properties (ii) & (iii) of the commutator.

https://youtu.be/6VsahKnoDHY
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6.4 Lie Algebras (cont.)

Let us consider special curves though e ∈ G, namely one-parameter subgroups, i.e. solu-
tions of

ġ(t) = iXg(t) , g(0) = e ,

with X ∈ g. We write g(t) = exp(iXt). For matrix Lie groups this exponential is given
by the absolutely and uniformly convergent series (cf. Problem 29)

exp(itX) =
∞∑
ν=0

(it)ν

ν!
Xν

For the special groups with det g = 1 the generators are traceless, since

det g(t) = det(eitX) = eit trX !
= 1 ⇔ trX = 0 .

For unitary groups, i.e. gg† = 1, the generators are Hermitian, since

g(t)† = g(t)−1 ⇔ e−itX† = e−itX ⇔ X = X† .

Examples:

1. SO(3), de�ning rep, Lie algebra, structure constants:

https://youtu.be/5ud3zMg-epo (5min) (1)

2. OA operators for SO(3):

https://youtu.be/Ia7SX4PrmNo (7min) (2)

6.5 More on SO(3)

Parametrise rotations as R~n(ψ), with rotation angle ψ and rotation axis ~n:

https://youtu.be/VBitdDXs9XQ (4min) (3)

Topology of SO(3):

https://youtu.be/bUu6amDkNb0 (3min) (4)

Further observation: Rotations about a �xed axis form a (one-parameter) subgroup of
SO(3). Such a subgroup is isomorphic to SO(2) (cf. Section 6.2). For arbitrary rotations
R ∈ SO(3) we have (by explicit calculation using the generators from above)

RR~n(ψ)R−1 = R~n′(ψ) with ~n′ = R~n .

This implies that all rotations by the same angle are in the same conjugacy class.

https://youtu.be/5ud3zMg-epo
https://youtu.be/Ia7SX4PrmNo
https://youtu.be/VBitdDXs9XQ
https://youtu.be/bUu6amDkNb0
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6.6 Invariant integration: Haar measure

When representing �nite groups we often used the rearrangement lemma as follows∑
g∈G

f(g) =
∑
g∈G

f(hg) =
∑
g∈G

f(gh) ∀ h ∈ G .

For continuous groups we would like to replace
∑

g∈G f(g) by an integral, say,
∫
G
f(g) dµ(g).

To this end we need an invariant measure µ.

Theorem 18. (Haar measure)
Every compact topological group possesses a left- and right-invariant measure µ, called
Haar measure; it is unique up to normalisation.

(in this generality without proof, but we will explicitly construct µ for compact Lie groups)

Remarks:

1. Invariance means µ(gA) = µ(Ag) = µ(A) ∀ g ∈ G and all Borel sets A ⊂ G.

Shorthand notation: dµ(gh) = dµ(hg) = dµ(g) ∀h ∈ G.
Why does this make sense?

2. For compact groups we will normalise such that volG =

∫
G

dµ(g) = 1 .

3. Hence, e.g. for continuous functions,∫
G

f(g) dµ(g) =

∫
G

f(hg) dµ(g) =

∫
G

f(gh) dµ(g) ∀h ∈ G .

https://youtu.be/Nx-2sfc_2ro (2min)

(1)

4. Moreover,

∫
G

f(g−1) dµ(g) =

∫
G

f(g) dµ(g).

https://youtu.be/bRobQky1UQ4 (3min) (2)

5. Existence implies uniqueness:

https://youtu.be/keYUKEBcENk (2min) (3)

6. One also �nds invariant measures under weaker conditions. For instance locally
compact groups (like GL(n,R) or the Lorentz group) possess left-invariant and right-
invariant measures (unique up to normalisation) but in general the two measures
are not identical.

https://youtu.be/Nx-2sfc_2ro
https://youtu.be/bRobQky1UQ4
https://youtu.be/keYUKEBcENk


6.6.1 Calculating the Haar measure for a Lie group

Parametrise the group elements using n = dimG parameters, i.e.1 g = g(x1, . . . , xn).
Then, locally,

dµ(g) = %(x1, . . . , xn) dnx

with a suitable density %(x) and Lebesgue measure dnx = dx1 . . . dxn.

Hence, under reparametrisation x = f(y) we have:

%(x) dnx = %
(
f(y)

) ∣∣∣∣det

(
∂f

∂y
(y)

)∣∣∣∣︸ ︷︷ ︸
Jacobian

dny =: %̃(y) dny

We now construct % such that invariance holds.

To this end expand (−i)g(x)−1 ∂g
∂xj

(x) in a basis {Xk} of the Lie algebra g,

g(x)−1 ∂g

∂xj
(x) = i

∑
k

XkA(x)kj .

https://youtu.be/-8CiMiXZW0A (4min)

(4)

Claim: The density %(x) = | detA(x)| de�nes a left-invariant measure.

Proof:

(i) We �rst check the behaviour under a (local) change of coordinates x = f(y).

https://youtu.be/OXxGTO9iTF4 (6min) (5)

(ii) Given a parametrisation in a neighbourhood of g, near g̃ = hg we choose the
parametrisation g̃(x) = h g(x). Then %̃ = %.

https://youtu.be/kGaGW0p4uvs (5min) (6)

(iii) Any other parametrisation in a neighbourhood of g̃ can be achieved by a further
change of coordinates as in (i). �

What about right-invariance?

Near g̃ = gh choose the parametrisation g̃(x) = g(x)h. Then

dµ(gh) = | detϕ(h)| dµ(g) . https://youtu.be/Waks9edvVJY (6min) (7)

The factor | detϕ(h)| is called modular function of G. If | detϕ(h)| = 1 ∀ h ∈ G, we say
that G is unimodular, and the left-invariant measure is also right-invariant.

Compact Lie groups are unimodular.

Show this by studying

∫
G

f(gh) dµ(g) for a constant function.

Example: Construct the Haar measure of SO(2) using the parametrisation of Sec. 6.2.

1Actually g = ϕ−1(x1, . . . , xn) but here we prefer this shorthand notation.

https://youtu.be/-8CiMiXZW0A
https://youtu.be/OXxGTO9iTF4
https://youtu.be/kGaGW0p4uvs
https://youtu.be/Waks9edvVJY
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6.7 Properties of compact Lie groups

Theorems 2 and 6 for representations of �nite groups also hold for continuous represen-
tations of compact Lie groups, if in statements and proofs we replace

1

|G|
∑
g∈G

. . . by

∫
G

. . . dµ(g) ,

Hence:

(i) Every �nite-dimensional representation is equivalent to a unitary representation.

(ii) Matrix elements of unitary irreps Γµ, Γν (non-equivalent for µ 6= ν) are orthogonal,∫
G

Γµ(g)jk Γν(g)j′k′ dµ(g) =
1

dµ
δµνδjj′δkk′ ,

with dµ = dim Γµ.

(iii) Similarly for the characters χµ(g) = tr Γµ(g) =
∑

j Γµ(g)jj,∫
G

χµ(g)χν(g) dµ(g) = δµν .

This implies again

Γ is irreducible ⇔
∫
G

|χ(g)|2 dµ(g) = 1 ,

as well as: If Γ is a directe sum of irreps, Γ =
⊕
µ

aµΓµ, then

aµ =

∫
G

χµ(g)χ(g) dµ(g) .

For �nite groups we also showed completeness of the representation matrices' elements
(Problem 16) and complete reducibility of the regular representation, carried by the group
algebraA(G) (Section 2.7). This implied that there were only �nitely many non-equivalent
irreps.

Similarly one can show that compact Lie groups have countably many non-equivalent
(continuous) irreducible representations, which are all of �nite dimension. Moreover,
every continuous representation is a direct sum of irreducible representations. All this
follows from the Peter-Weyl theorem.



Consider the vector L2(G) of functions φ : G→ C, with scalar product

〈φ|ψ〉 =

∫
G

φ(g)ψ(g) dµ(g) .

The role of the regular representation is played by Γ de�ned as(
Γ(h)φ

)
(g) = φ(h−1g) ∀ h ∈ G .

Convince yourself that Γ is a representation.

Does it make sense that functions φ : G→ C now play the role that elements of A(G)
played for �nite groups?

Theorem 19. (Peter-Weyl)
Let G be a compact Lie group with non-equivalent irreps Γµ, dim Γµ = dµ. Then the matrix
elements

√
dµ Γµ(g)jk, j, k = 1, . . . , dµ, form a complete set of orthonormal functions for

L2(G).

(without proof)

Remarks:

1. We can thus expand every function φ ∈ L2(G) as

φ(g) =
∑
µ,j,k

cµjk Γµ(g)jk with cµjk = dµ

∫
G

Γµ(g)jk φ(g) dµ(g)

(convergence in L2-sense).

What does this reduce to for G = SO(2) ∼= U(1)? (cf. Section 6.2)

2. In physics notation we write completeness as∑
µ,j,k

dµ Γµ(g)jk Γµ(h)jk = δ(g − h) with

∫
G

δ(g − h) f(g) dµ(g) = f(h) .



6.8 Irreducible representations of SO(3)

For every g ∈ SO(3) exists an X ∈ so(3) s.t. g = eiX . Choose, e.g., the basis

J1 =

0 0 0
0 0 −i
0 i 0

 , J2 =

 0 0 i
0 0 0
−i 0 0

 , J3 =

0 −i 0
i 0 0
0 0 0

 ,

of so(3) with

[Jj, Jk] = i
∑
`

εjk`J` .

Then

R~n(ψ) = e−iψ~n~J where ~n ~J =
3∑
j=1

njJj

(rotation about axis ~n by angle ψ, cf. Section 6.5):

https://youtu.be/uPs-QSVt13s (6min) (1)

From every representation of a Lie group we obtain (by taking derivatives) a representation
of the corresponding Lie algebra (in terms of matrices). More precisely, with g(t), g(0) = e,
ġ(0) = iX and a rep Γ of G de�ne the derived rep dΓ of g by

dΓ(X) = −i
d

dt
Γ
(
g(t)

)∣∣∣
t=0

.

From a representation of the Lie algebra so(3) we obtain (by exponentiating) a represen-
tation of the group SO(3), if the global (topological) properties match those of SO(3).

Construction of reps of so(3). The matrix (operator)

J2 =
3∑
j=1

J2
j

commutes with every X ∈ so(3):

https://youtu.be/sxbtMVW2PJA (5min) (2)

Remark: J2 is not in the Lie algebra; it is a so-called Casimir operator and an element
of the enveloping algebra (see later).

Consequences:

1. [J2, X] = 0 ∀X ∈ so(3) implies [J2, g] = 0 ∀ g ∈ SO(3). Why?

2. Consider a representation of SO(3). Now all this also holds for the representation
matrices of g, X, and J2.

3. If the representation is irreducible then according to Schur's Lemma (Theorem 4),
the representation matrix of J2 is a multiple of the identity matrix.

Next time we will construct all irreps of so(3) in terms of simultaneous eigenvectors of
the representation matrices of J2 and one generator. After exponentiation these become
irreps of SO(3) if the global properties are correct.

https://youtu.be/uPs-QSVt13s
https://youtu.be/sxbtMVW2PJA
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6.8 Irreducible representations of SO(3) (cont.)

Assume we are given a representation of SO(3).

Notation: We denote the representation matrices of g,X, J2 also by g,X, J2.

Construct irreducible subspaces (and thus irreps) as follows:

I Choose a suitable starting vector.

I Generate an irreducible basis by repeatedly applying the generators.

Suitable starting vector: Joint normalised eigenvector of J2 and J3 (Why can we choose
it in this way?), in Dirac notation

J3|m〉 = m|m〉

We de�ne J± = J1 ± iJ2. Then

[J±, J3] = ∓J± and thus J3J±|m〉 = (m± 1)J±|m〉 ,
https://youtu.be/4RE3ZFSPyGI (4min)

(1)

i.e. either J±|m〉 ∝ |m± 1〉 or J±|m〉 = 0.

Since the invariant subspace has to be �nite dimensional the sequence

. . . , J−|m〉, |m〉, J+|m〉, J2
+|m〉, . . .

has to terminate on both sides, say at m = j and at m = ` with j ≥ `,

J3|j〉 = j|j〉 , J3|`〉 = `|`〉 ,
J+|j〉 = 0 , J−|`〉 = 0 .

What is the dimension of this irreducible subspace?

We further have

J2 = J2
3 + J−J+ + J3 and J2 = J2

3 + J+J− − J3 ,

https://youtu.be/-qlcOB1JBmo (2min)
(2)

and in particular (why?)

J2|j〉 = (J2
3 + J3 + J−J+)|j〉 = j(j + 1)|j〉 ,

J2|`〉 = (J2
3 − J3 + J+J−)|`〉 = `(`− 1)|`〉 .

Since both eigenvalues have to be identical (why?) we conclude that ` = −j (why?)
and j ≥ 0. Hence, we can label so(3) irreps by j = 0, 1

2
, 1, 3

2
, 2, . . .

I The dimension of irrep j is 2j + 1.

https://youtu.be/4RE3ZFSPyGI
https://youtu.be/-qlcOB1JBmo


From now on denote orthonormal basis vectors as |jm〉. Then

J2|jm〉 = j(j + 1)|jm〉
J3|jm〉 = m|jm〉
J±|jm〉 = [j(j + 1)−m(m± 1)]1/2|j,m± 1〉

Verify the last identity by calculating the norm of J±|jm〉.

Irreps of SO(3). Now we distinguish again between g and Γ(g) and between X and
dΓ(X). Denote by Γj the potential irrep of SO(3) carried by {|jm〉 : m = −j . . . , j}, i.e.
the matrix elements are

Γj
(
e−iψ~n~J

)
mm′

= 〈jm| e−iψ dΓ(~n ~J) |jm′〉 .

Only for integer j does this de�ne a representation of SO(3):

https://youtu.be/Cviw6oLYN68 (5min) (3)

Irreps of SU(2). The Pauli matrices σ1, σ2, σ3 (see Problem 32) form a basis of the Lie
algebra su(2) with

[σj, σk] = 2i
∑
l

εjklσl ,

i.e. the matrices σk/2 satisfy the same relations as the Jk, and thus su(2) ∼= so(3). Hence
we also already know all irreps of su(2). Since SU(2) = exp(isu(2)) (cf. Problems 32 &
34), we get irreps of SU(2) for all j ∈ N0/2.

Determine the characters of all irreps of SO(3) and of all irreps of SU(2).

https://youtu.be/Cviw6oLYN68


6.9 Remarks on some classical Lie groups

De�nition: (adjoint representation)
Let G be a (matrix) Lie group with corresponding Lie algebra g, and let g ∈ G. The map
Ad : g 7→ Adg with

Adg : g → g

X 7→ gXg−1 = Adg(X)

is called adjoint representation of G (on g).

Remarks:

1. Ad is actually a representation. Show this.

2. We also de�ne Adg(h) = ghg−1 for h ∈ G.
3. For X ∈ g we further de�ne adX : g→ g by

adX(Y ) =
1

i

d

dt
AdeiXt(Y )

∣∣∣∣
t=0

=
1

i

d

dt

(
eiXtY e−iXt

)∣∣∣∣
t=0

= [X, Y ] .

Lemma 20. (Principal axis theorem for unitary matrices)
For every g ∈ U(n) there exists an h ∈ U(n) s.t. h†gh is diagonal, in particular

g = h

eiϕ1 0
. . .

0 eiϕn

h†

with real ϕj.

Proof: Reduce to the principal axis theorem for Hermitian matrices.
Let Mφ = {g ∈ U(n) : eiφ is not eigenvalue of g}. Then

fφ : Mφ → Cn×n

g 7→ i(eiφ + g)(eiφ − g)−1

(generalised Cayley transformation) maps unitary g to Hermitian matrices A = fφ(g):

https://youtu.be/TNfDf6iEpAo (5min) (4)

Now there exists an h ∈ U(n) s.t. h†Ah = D is diagonal (principal axis theorem for
Hermitian matrices). Furthermore, we can explicitly invert fφ:

https://youtu.be/BZg9dikdumE (2min) (5)

Finally, for given g ∈ U(n) choose φ s.t. g ∈Mφ, call A = fφ(g), and choose h ∈ U(n) s.t.
h†Ah = D is diagonal. Then h also diagonalises g:

h†gh = h†eiφ(A+ i)−1hh†(A− i)h = eiφ(D + i)−1(D − i) .

�

Explain why the analogous result also holds for g ∈ SU(n) ⊂ U(n), with h ∈ SU(n).

https://youtu.be/TNfDf6iEpAo
https://youtu.be/BZg9dikdumE
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6.9 Remarks on some classical Lie groups (cont.)

Theorem 21. For every g ∈ U(n) there exists an X ∈ u(n) s.t. g = eiX .

Proof:
https://youtu.be/2SganmGZf7k (2min) (1)

Remarks:

1. Simillarly, for every g ∈ SU(n) there exists an X ∈ su(n), s.t. g = eiX . Why?

2. Similarly for g ∈ SO(2n): One �rst shows that there exists an h ∈ SO(2n) s.t.

g = h

R1 0
. . .

0 Rn

hT

with Rj ∈ SO(2). Why? For SO(2n+1) the diagonal matrix has an additional row
with an entry 1. Then also every g ∈ SO(n) can be written as eiX with X ∈ so(n).

3. In all these cases we can in principle construct irreps using the same strategy as in
Section 6.8 for SO(3) or SU(2): First construct irreducible representations of the
Lie algebra and by exponentiation (potential) reps of the group.

4. The diagonal matrices which appear in this procedure are maximal abelian sub-
groups (so-called maximal tori) of the corresponding group.

6.10 More on Lie algebras and related topics

De�nition: (representation of a Lie algebra)
Let g be a Lie algebra and V a vector space. A representation φ is a linear map that
assigns to each X ∈ g a linear map φ(X) : V → V s.t.

φ(i [X, Y ]︸ ︷︷ ︸
Lie bracket

) = [φ(X), φ(Y )]︸ ︷︷ ︸
commutator

∀ X, Y ∈ g .

Remark: The i-decoration comes from our convention that G = exp(ig).

Examples:

1. ad : g 3 X 7→ adX with adX(Y ) = [X, Y ] de�nes a representation of g on g:

https://youtu.be/wfkch23mM04 (5min) (2)

https://youtu.be/2SganmGZf7k
https://youtu.be/wfkch23mM04


2. From a rep Γ of a Lie group G we obtain (by di�erentiation) a rep dΓ of the Lie
algebra g,

dΓ(X) =
1

i

d

dt
Γ(eiXt)

∣∣∣∣
t=0

.

De�nition: (enveloping algebra)
Let g be a Lie algebra with basis {Xj}. The enveloping algebra E(g) consists of formal
polynomials in the generators∑

j

aj(iXj) +
∑
jk

bjk(iXj)(iXk) +
∑
jkl

cjkl(iXj)(iXk)(iXl) + . . . , aj, bjk, cjkl ∈ R ,

where iXjiXk and iXkiXj + iXl have to be identi�ed if [iXj, iXk] = iXl.

Remarks:

1. A representation φ of a Lie algebra then also induces a representation of the en-
veloping algebra, whereby the formal products and sums become matrix products
and matrix sums.

2. A basis of the enveloping algebra is, e.g., given by those monomials in the generators
for which the indices are non-decreasing from left to right:

https://youtu.be/tydgmSEW18I (2min) (3)

De�nition: (Casimir operator)
C ∈ E(g) is called Casimir operator if C commutes with all elements of the enveloping
algebra, i.e. if

[C,A] = 0 ∀ A ∈ E(g) .

Example: J2 := J2
1 + J2

2 + J2
3 for SO(3) (cf. Section 6.8).

Remarks:

1. In particular a Casimir operator commutes with all X ∈ g ⊆ E(g).

2. This implies eiXCe−iX = C ∀ X ∈ g, i.e. in the cases of Sections 6.8 and 6.9, where
G = exp(ig), we immediately conclude gCg−1 = C ∀ g ∈ G.

3. gCg−1 = C ∀ g ∈ G is even true more generally, since one can show:

I exp(ig) always contains a neighbourhood of the identity in G.

I By taking (�nite) products eiXeiY eiZ . . . one reaches all g ∈ G0, the connected
component of the identity.

I If G is connected, then for representations (of the Lie group, the Lie algebra
and the enveloping algebra) we thus have [dΓ(C),Γ(g)] = 0 ∀ g ∈ G, and
according to Schur's Lemma (Theorem 4) it follows that for irreps dΓ(C) is a
scalar multiple of 1.

https://youtu.be/tydgmSEW18I
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7 Tensor method for constructing irreps of GL(N) and subgroups

7.1 Setting

In the following let V be complex vector space with dimV = N , i.e. V ∼= CN .

De�ne V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n factors

. Form tensor products from |vj〉 ∈ V , j = 1, . . . , n:

n⊗
j=1

|vj〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 ∈ V ⊗n .

General |v〉 ∈ V ⊗n are linear combinations of tensor products, called tensors of rank n.

V ⊗n carries reps Γ of GL(N) and D of Sn

Γ(g)
n⊗
j=1

|vj〉 =
n⊗
j=1

γ(g)|vj〉 , with γ(g) = g (de�ning rep),

D(p)
(
|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉

)
= |vp−1(1)〉 ⊗ |vp−1(2)〉 ⊗ · · · ⊗ |vp−1(n)〉 ,

everything continued by linearity; D also extends to a rep of A(Sn).

Convince yourself that D is a rep.

These reps commute, i.e.

Γ(g)D(p)|v〉 = D(p)Γ(g)|v〉 ∀ p ∈ Sn , ∀ g ∈ GL(N) , ∀ |v〉 ∈ V ⊗n ,

and even ∀ p ∈ A(Sn).

Notation: Form now on, we omit Γ and D, e.g. we write gp|v〉 = pg|v〉.
How does p ∈ Sn act on an arbitrary |x〉 ∈ V ⊗n?

https://youtu.be/EEEq-bCuc5c (3min) (1)

https://youtu.be/EEEq-bCuc5c


7.2 Decomposition of V ⊗n into irreducible invariant subspaces
with respect to Sn and GL(N)

7.2.1 Symmetry classes

Let Θp
λ be a Young tableau, e

p
λ the corresponding Young operator, and Lλ = A(Sn)eλ the

minimal left ideal generated by eλ

In the following we will see:

For �xed |v〉 ∈ V ⊗n the subspace

Lλ|v〉 = A(Sn)eλ|v〉

(if non-empty) is invariant and irreducible
w.r.t. Sn.

The subspace

epλV
⊗n

is invariant and irreducible w.r.t. GL(N).

Then we will be able to choose a basis {|λ, α, a〉} of V ⊗n s.t.
λ lables the so-called symmetry class, given by a Young diagram,
α labels the irreducible invariant subspaces w.r.t. Sn,
a labels the irreducible invariant subspaces w.r.t. GL(N).

Lemma 22. For �xed |α〉 ∈ V ⊗n the subspace Tλ(α) = Lλ|α〉 is either empty or

(i) Tλ(α) is invariant and irreducible under Sn and

(ii) the Sn irrep carried by Tλ(α) is given by the irrep carried by Lλ.

Proof:
https://youtu.be/Nv1AecrF2vE (6min) (2)

7.2.2 Totally symmetric and totally anti-symmetric tensors

Let λ = s = · · · , i.e. es = s is the total symmetriser of Sn, Ls is one-dimensional.

⇒ For given |α〉 the subspace Ts(α) is one-dimensional, Ts(α) = span(es|α〉).
These tensors are totally symmmetric (in all indices).

Each Ts(α) carries the trivial representation of Sn.

Example: n = 3, N = 2
https://youtu.be/Crhbo74Jj0k (5min) (3)

We denote the space spanned by the tensors of symmetry class s by T ′s .

Totally anti-symmetric tensors exist only for n ≤ N ,

λ = a = ... ,
since for n > N every basis vector contains at least
two identical indices, anti-symmetrisation yields zero.

The Sn irrep carried by Ta(α) is sgn.

Example: n = 2, N ≥ 2
https://youtu.be/sX_vkzbmiiQ (2min) (4)

Construct all totally symmetric tensors for n = 2 and arbitrary N . How many are there?

https://youtu.be/Nv1AecrF2vE
https://youtu.be/Crhbo74Jj0k
https://youtu.be/sX_vkzbmiiQ
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7.2.3 Tensors with mixed symmetry

Example: Consider tensors of rank n = 3 in N = 2 dimensions, and choose

Θκ = 1 2
3

with eκ = e+ (12)− (13)− (132) .

From Section 5.3 we know: Lκ = span(eκ, (23)eκ)

I First we choose |α〉 = |112〉:

eκ|112〉 = 2|112〉 − |211〉 − |121〉 =: |κ, 1, 1〉 ,
(23)eκ|112〉 = 2|121〉 − |211〉 − |112〉 =: |κ, 1, 2〉 .

https://youtu.be/saVR889k6qA (3min)

⇒ Tκ(1) = A(S3)eκ|112〉 = span(|κ, 1, 1〉, |κ, 1, 2〉) is invariant and irreducible under S3.

I Then we choose |α〉 = |221〉:

eκ|221〉 = 2|221〉 − |122〉 − |212〉] =: |κ, 2, 1〉 ,
(23)eκ|221〉 = 2|212〉 − |122〉 − |221〉] =: |κ, 2, 2〉 ,

⇒ Tκ(2) = A(S3)eκ|221〉 = span(|κ, 2, 1〉, |κ, 2, 2〉) is invariant and irreducible under S3.

I |κ, 1, 1〉 and |κ, 2, 1〉 span the 2-dimensional subspace T ′κ(1) = eκV
⊗3.

(i) T ′κ(1) is invariant under GL(2), since gp = pg ∀ g ∈ GL(2) and ∀ p ∈ S3 implies

geκ|v〉 = eκg|v〉 ∈ T ′κ(1) .

This argument requires neither n = 3 nor N = 2, nor λ = κ � it is true in general!

(ii) T ′κ(1) is irreducible under GL(2).

Proof: We explicitly construct the representation matrices for g ∈ GL(2):

Γκ(g) = det g

(
g11 −g12

−g21 g22

)
https://youtu.be/fN3r9Ja6wkU (10min) (1)

Why does this prove irreducibility of Γκ?

I Similarly, |κ, 1, 2〉 and |κ, 2, 2〉 span T ′κ(2) = e
(23)
κ V ⊗3, which is also invariant and

irreducible under GL(2) and carries a rep that is equivalent to Γκ.

I The direct sum T ′κ(1)⊕ T ′κ(2) contains all tensors of symmetry class κ = .

https://youtu.be/gX6Q7HzJzSE
https://youtu.be/saVR889k6qA
https://youtu.be/fN3r9Ja6wkU


Summary: Complete reduction of the 8-dimensional space V ⊗3:
(recall that Θs = and Θκ = )

V ⊗3 = Ts(1)⊕ Ts(2)⊕ Ts(3)⊕ Ts(4)︸ ︷︷ ︸ ⊕ Tκ(1)⊕ Tκ(2)︸ ︷︷ ︸ ← invariant under S3

= T ′s ⊕
︷ ︸︸ ︷
T ′κ(1)⊕ T ′κ(2) ← invariant under GL(2)

T ′s carries a 4-dimensional irrep of GL(2); under S3 it is the direct sum of 4 one-dimensional
subspaces, each carrying the trivial rep.

As a convenient basis for V ⊗3 we can choose:

• the 4 totally symmetric tensors from Section 7.2.2, and

• the 4 tensors |κ, α, a〉 with α = 1, 2 and a = 1, 2.

7.2.4 Complete reduction of V ⊗n

The observations and results of the preceding sections generalise. We will look at this
together in our live session.

7.2.5 Dimensions of the GL(N) irreps

Essentially, we already know the dimensions of the GL(N) irreps: To each Young diagram
λ corresponds an Sn irrep Dλ and a GL(N) irrep Γλ. For the Sn irreps we can determine
dimensions and multiplicities (within V ⊗n) using the methods of Sections 4.3.1 and 5.5.
According to the construction in Sections 7.2.1�4 the multiplicity of Dλ is equal to the
dimension of Γλ and vice versa. Determining the dimensions in this way can be tedious,
and there are several other algorithms and formulae. We will speak about the following
two in our live session:

I Graphical rule: The dimension of the GL(N) irrep corresponding to the Young
diagram λ is given by the number of semi-standard Young tableaux Θλ. In semi-
standard Young tableaux numbers need not increase in rows but must only be
non-deceasing.

Example: For N = 2 we �nd

dim Γ = 2 and dim Γ = 4 ,

since the allowed choices are

1 1
2

, 1 2
2

and 1 1 1 , 1 1 2 , 1 2 2 , 2 2 2 .

Determine the corresponding dimensions for N = 3.

I Hook length formula:

dim(Γλ) =
∏
ij

N + j − i
hij
↑

hook length of box i, j

(
product over all boxes of λ
i = row, j = column index

)
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7.3 Irreps of U(N) and SU(N)

The GL(N) irreps from Section 7.2 restrict to representations of subgroups, which do not
need to be irreducible. They are, however, irreducible for U(N) and SU(N) but in general
not for O(N) and SO(N).

U(N) and SU(N) https://youtu.be/WM6vX88PKG4 (4min) (1)

O(N) and SO(N) https://youtu.be/_-ooGDPg2O4 (4min) (2)

Show that the GL(N) irrep corresponding to the Young diagram a =
:̇

with N rows is given by the determinant:

I First recall that for vectors |i1, . . . , iN〉 contributing to eag|α〉 all ik are di�erent.
I Write these vectors as p|1, . . . , N〉 with a permutation p.

I Then calculate eag|1, . . . , N〉 for g ∈ GL(N).

Which irrep corresponds to a if we replace GL(N) by the subgroup SU(N)?

In the exercises we will show that the SU(N) irreps corresponding to the Young diagrams
(with row lenghts) (λ1, . . . , λN) and (λ1+k, . . . , λN+k) are equivalent, e.g.

and for N = 5 and k = 2.

For SU(2), except for the trivial rep, all irreps can be labelled by one-row Young diagrams.
What are the corresponding dimensions?

7.4 Reducing tensor products in terms of Young diagrams

Goal: Given two irreps Γλ and Γλ
′
of GL(N), U(N) or SU(N) with Young diagrams λ

and λ′ �nd the complete reduction of the product rep Γλ ⊗ Γλ
′
.

Examples and observations:

⊗2 , ⊗3 , ⊗4 https://youtu.be/FLPJbunjr9U (11min) (3)

Closer inspections leads to the Littlewood-Richardson rule (which we won't prove):

1. Write the number i in all boxes of row i of λ′.

2. Add the boxes of λ′ to λ, �rst the 1s, then the 2s etc. adhering to the following
rules:

https://youtu.be/WM6vX88PKG4
https://youtu.be/_-ooGDPg2O4
https://youtu.be/FLPJbunjr9U


(a) In each step the resulting diagram has to be a valid Young diagram and must
not have more than N rows.

(b) No number may appear more than once in the same column.

(c) When reading the numbers row-wise from right to left beginning with the �rst
row, then the second etc., and terminating this sequence at any point, there
must never be more is than (i−1)s.

3. For SU(N) columns with N boxes can be omitted.

Always check your result by comparing dimensions on both sides of the equation.

Example:

⊗ for SU(3) https://youtu.be/xrze6-yRWTI (10min) (4)

Reduce ⊗ for SU(3).

7.5 Complex conjugate representations

Observation: Sometimes dim Γλ = dim Γλ
′
for λ 6= λ′. This may be �accidental� but

often it can be understood systematically in terms of the following construction.

Example: Consider for N = 3.

Basis tensors: (anti-symmetric tensors of rank 2 in 3 dimensions)

|23〉 − |32〉 , |31〉 − |13〉 , |12〉 − |21〉 .

Action of GL(3), e.g.

g(|12〉 − |21〉) = |ij〉(gi1gj2 − gi2gj1)

= |23〉(g21g32 − g22g31) + |32〉(g31g22 − g32g21)︸ ︷︷ ︸
=(|23〉−|32〉) det

( g21 g22
g31 g32

)
+ |31〉(g31g12 − g32g11) + |13〉(g11g32 − g12g31)︸ ︷︷ ︸

=(|31〉−|13〉) (−1) det
( g11 g12
g31 g32

)
+ |12〉(g11g22 − g12g21) + |21〉(g21g12 − g22g11)︸ ︷︷ ︸

=(|12〉−|21〉) det
( g11 g12
g21 g22

) ,

similarly for the other two basis elements. We �nd

Γ (g) =



det

(
g22 g23
g32 g33

)
(−1) det

(
g21 g23
g31 g33

)
det

(
g21 g22
g31 g32

)

(−1) det

(
g12 g13
g32 g33

)
det

(
g11 g13
g31 g33

)
(−1) det

(
g11 g12
g31 g32

)

det

(
g12 g13
g21 g23

)
(−1) det

(
g11 g13
g21 g23

)
det

(
g11 g12
g21 g22

)


= adj(g)T ,

https://youtu.be/xrze6-yRWTI


with the adjunct matrix adj(g). According to Cramer's rule g−1 =
adj(g)

det g
, i.e.

Γ (g) = det g · (g−1)T .

Remark: This is true for arbitrary N > 2 and the Young diagram :̇ (N−1 boxes).

For SU(3) we have det g = 1 and g−1 = g†, i.e. Γ (g) = g. We write = and also put

a bar over the dimension

For GL(N), besides the de�ning rep g also (g−1)T , g and (g−1)T are N -dimensional irreps,
in general non-equivalent.

For SU(N), due to g† = g−1, we have

(g−1)T = g and (g−1)T = g ,

i.e. at most two of the four irreps are non-equivalent. For SU(2), even g and g are
equivalent, see Problem 40; for N ≥ 3 they are are non-equivalent. In terms of Young
diagrams we obtain the complex conjugate irrep by means of a simple procedure which
we will study in the live session.


