IMC Training
WiSe 2022/23
Inequalities

Universität Tübingen
Ángela Capel Cuevas

Part 1: Introduction to Inequalities

We first consider the following two fundamental inequalities:

- If x is a real number, then

$$
\begin{equation*}
x^{2} \geq 0 \tag{Ineq1}
\end{equation*}
$$

Moreover, equality holds if, and only if, $x=0$.

- If $a, b \in \mathbb{R}$, then:

$$
\begin{equation*}
a^{2}+b^{2} \geq 2 a b \tag{Ineq2}
\end{equation*}
$$

Moreover, equality holds if, and only if, $a=b$.
Using only these inequalities, we can solve the following problems:

Problem 1. Prove that, if $a, b, c \in \mathbb{R}$, then $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.

Problem 2. Find all numbers $a, b, c, d \in \mathbb{R}$ such that $a^{2}+b^{2}+c^{2}+d^{2}=a(b+c+d)$.

Problem 3. If $a, b, c \in \mathbb{R}$ are positive and such that $a^{2}+b^{2}+c^{2}=1$, find the minimal value of

$$
\begin{equation*}
\frac{a^{2} b^{2}}{c^{2}}+\frac{b^{2} c^{2}}{a^{2}}+\frac{c^{2} a^{2}}{b^{2}} \tag{1}
\end{equation*}
$$

Problem 4. If $a, b, c \in \mathbb{R}$ are positive and such that

$$
\begin{equation*}
\frac{a^{2}}{1+a^{2}}+\frac{b^{2}}{1+b^{2}}+\frac{c^{2}}{1+c^{2}}=1, \tag{2}
\end{equation*}
$$

prove that

$$
\begin{equation*}
a b c \leq \frac{1}{2 \sqrt{2}} . \tag{3}
\end{equation*}
$$

Problem 5 (Nesbit's inequality). If $a, b, c \in \mathbb{R}$ are positive, prove that:

$$
\begin{equation*}
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} . \tag{4}
\end{equation*}
$$

Arithmetic-Geometric Inequality

Let $x_{1}, x_{2}, \ldots x_{n}$ be positive real numbers. The following inequalities hold:

$$
\begin{equation*}
0<\underbrace{\frac{n}{\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n}}}}_{\text {Harmonic mean }} \leq \underbrace{\sqrt[n]{x_{1} \ldots x_{n}}}_{\text {Geometric mean }} \leq \underbrace{\frac{x_{1}+\ldots+x_{n}}{n}}_{\text {Arithmetic mean }} \leq \underbrace{\sqrt{\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{n}}}_{\text {Quadratic mean }} \tag{Ineq3}
\end{equation*}
$$

The most-frequently used one is the arithmetic-geometric inequality. Equality holds in all the previous inequalities if, and only if, $x_{1}=\ldots=x_{n}$.

Using this and the previous inequalities, we can solve the following problems:

Problem 6. Prove that, if $a, b \in \mathbb{R}$ are positive, then $2 a^{3}+b^{3} \geq 3 a^{2} b$.

Problem 7. Prove that, if $a, b, c \in \mathbb{R}$ are positive, then the following holds:

$$
\begin{equation*}
\frac{a^{3}}{a^{2}+a b+b^{2}}+\frac{b^{3}}{b^{2}+b c+c^{2}}+\frac{c^{3}}{c^{2}+c a+a^{2}} \geq \frac{a+b+c}{3} \tag{5}
\end{equation*}
$$

Hölder's inequality

Let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ or \mathbb{C}^{n}. We have

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}, \tag{6}
\end{equation*}
$$

for p, q satisfying $1=\frac{1}{p}+\frac{1}{q}$. Equality holds if, and only if, there is a constant λ such that $x_{i}=\lambda y_{i}$ for all $i=1, \ldots, n$.
A particular case of this is Cauchy-Schwarz inequality:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{1 / 2} . \tag{7}
\end{equation*}
$$

Young's inequality

Let a, b, p and q be positive real numbers with $\frac{1}{p}+\frac{1}{q}=1$. Then, we have

$$
\begin{equation*}
\frac{a^{p}}{p}+\frac{b^{q}}{q} \geq a b \tag{8}
\end{equation*}
$$

Equality holds if, and only if, $a^{p}=b^{q}$.

Minkowski's inequality

Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and m_{1}, \ldots, m_{n} be three sequences of positive real numbers and $p>1$. Then, the following holds

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p} m_{i}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} x_{i}^{p} m_{i}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p} m_{i}\right)^{1 / p} \tag{9}
\end{equation*}
$$

The equality holds if, and only if, there is a constant λ such that $x_{i}=\lambda y_{i}$ for all $i=1, \ldots, n$.

Jensen's inequality

Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function and $\alpha_{1}, \ldots, \alpha_{n}$ a sequence of positive numbers such that $\alpha_{1}+\ldots+\alpha_{n}=1$. Then, for any sequence $x_{1}, \ldots, x_{n} \in[a, b]$, we have

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right) \tag{10}
\end{equation*}
$$

If f is concave, the previous inequality is reversed.

Chebyshev's inequality

Let $a_{1} \geq \ldots \geq a_{n}$ and $b_{1} \geq \ldots \geq b_{n}$ be real numbers. Then,

$$
\begin{equation*}
n \sum_{i=1}^{n} a_{i} b_{i} \geq\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} b_{i}\right) \geq n \sum_{i=1}^{n} a_{i} b_{n+1-i} \tag{11}
\end{equation*}
$$

Both inequalities are equalities if, and only if, $a_{1}=\ldots=a_{n}$ or $b_{1}=\ldots=b_{n}$.

