Part 1: Introduction to Geometric Inequalities

Let us consider a triangle $A B C$ with:

- Sides labeled by $a=B C, b=C A$ and $c=A B$.
- Angles denoted by $\alpha=\angle A=\angle B A C, \beta=\angle B=\angle A B C, \gamma=\angle C=\angle A C B$.
- Midpoints of the sides denoted by A_{1} (for $B C$), B_{1} (for $C A$) and C_{1} (for $A B$).
- Feet of the altitudes from A, B, C to the opposite sides labeled by $A^{\prime}, B^{\prime}, C^{\prime}$, respectively.
- Points of intersection of the internal bisectors and the sides denoted by $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$.
- Length of the medians $A A_{1}, B B_{1}, C C_{1}$ denoted by m_{a}, m_{b}, m_{c}.
- Length of the altitudes $A A^{\prime}, B B^{\prime}, C C^{\prime}$ denoted by h_{a}, h_{b}, h_{c}.
- Length of the segments of internal bisectors $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ denoted by l_{a}, l_{b}, l_{c}.
- Semi-perimeter of the triangle denoted by $p=\frac{a+b+c}{2}$.
- Circumradius of the triangle labeled by R.
- Inradius of the triangle labeled by r.
- Radii of the excircles (three circles tangent to one side and the extensions of the other two sides) labeled by r_{a}, r_{b}, r_{c}.
- Area of the triangle $S_{A B C}$.

Theorem 1. Triangle inequality. If $A B C$ is a triangle, then the following two statements hold:

1. The lengths of the sides are related by $a<b+c, b<a+c, c<a+b$.

Conversely, if a, b, c are positive real numbers such that each is smaller than the sum of the other two, then there exists a triangle of sides a, b, c.
2. $A B<B C$ if, and only if, $\angle A C B<\angle B A C$.

Using only these inequalities and the notation above, we can solve the following problems:

Problem 1. Prove that, for an arbitrary triangle $A B C$, the following inequalities hold:

$$
\begin{equation*}
p<m_{a}+m_{b}+m_{c}<2 p . \tag{1}
\end{equation*}
$$

Problem 2. Prove that, for an arbitrary triangle $A B C$, the sum of its medians is greater than $3 / 4$ of the sum of its sides.

Theorem 2. Ptolemy For any four points A, B, C, D in the plane, the following inequality holds:

$$
\begin{equation*}
A C \cdot B D \leq A B \cdot C D+A D \cdot B C \tag{2}
\end{equation*}
$$

Equality holds if, and only if

- $A B C D$ is cyclic with diagonals $A C$ and $B D$;
- or A, B, C, D are collinear and exactly one of B, D is between A and C.

Theorem 3. Parallelogram Inequality For every fours points A, B, C, D in the space we have

$$
\begin{equation*}
A B^{2}+B C^{2}+C D^{2}+D A^{2} \geq A C^{2}+B D^{2} \tag{3}
\end{equation*}
$$

Equality holds if, and only if, $A B C D$ is a parallelogram (or degenerated parallelogram).
Using these theorems, we can solve the following problems.

Problem 3. Let $A B C$ be an acute-angled triangle. Using a straight-edge and compass, construct a point M inside the triangle $A B C$ for which the sum $M A+M B+M C$ is minimal.

Such a point is called Toricelli point. Note that, if Q_{A}, Q_{B} and Q_{C} are exterior points to the triangle such that $\triangle B A Q_{C}, \triangle A C Q_{B}, \triangle C B Q_{A}$ are equilateral, then M is the intersection of $A Q_{A}, B Q_{B}$ and $C Q_{C}$.

Problem 4. Prove that $h_{a} \leq l_{a} \leq m_{a}$.

Part 2: Geometric Substitution

This is a trick used to solve some inequalities constructed from the sides a, b, c of a triangle. At first sight, the only relation we have between these three numbers is

$$
\begin{equation*}
a<b+c, b<a+c, c<a+b . \tag{4}
\end{equation*}
$$

However, since $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the points of intersection of the internal bisectors and the sides, we have $A B^{\prime \prime}=A C^{\prime \prime}$, which we denote by x. Similarly, we write $y=B A^{\prime \prime}=B C^{\prime \prime}$ and $z=C A^{\prime \prime}=C B^{\prime \prime}$. Then, it is clear that

$$
\begin{equation*}
a=y+z, b=z+x, c=x+y \tag{5}
\end{equation*}
$$

Therefore, we have the following result: The following two facts are equivalent for positive real numbers a, b, c

- They are the sides of a triangle.
- There are positive real numbers x, y, z such that $a=y+z, b=z+x, c=x+y$.

With this trick, we can solve the following problems:

Problem 5. If a, b, c are the lengths of the sides of a triangle, prove that

$$
\begin{equation*}
\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c} \geq 3 \tag{6}
\end{equation*}
$$

Problem 6. If a, b, c are the lengths of the sides of a triangle and s is the semi-perimeter of the triangle, prove that

$$
\begin{equation*}
a^{2}(p-a)+b^{2}(s-b)+c^{2}(s-c) \leq \frac{3}{2} a b c . \tag{7}
\end{equation*}
$$

Part 3: Some important theorems in Geometry

Theorem. Let M be a point on the side $B C$ of the triangle $A B C$. Then,

$$
\begin{equation*}
\overrightarrow{A M}=\frac{\overrightarrow{M C}}{\overrightarrow{B C}} \cdot \overrightarrow{A B}+\frac{\overrightarrow{B M}}{\overrightarrow{B C}} \cdot \overrightarrow{A C} \tag{8}
\end{equation*}
$$

Theorem. Stewart Let M be a point on the side $B C$ of the triangle $A B C$. Then,

$$
\begin{equation*}
A M^{2}=\frac{M C}{B C} \cdot A B^{2}+\frac{B M}{B C} \cdot A C^{2}-B M \cdot M C . \tag{9}
\end{equation*}
$$

Problem 7. If a, b, c are the lengths of the sides of a triangle and m_{a} is the length of the median corresponding to the side a, prove that

$$
\begin{equation*}
m_{a}^{2} \leq \frac{2 b^{2}+2 c^{2}-a^{2}}{4} \tag{10}
\end{equation*}
$$

Problem 8. Let O be the circumcenter of the triangle $A B C$ and G its centroid. Prove that

$$
\begin{equation*}
O G^{2}=R^{2}-\frac{1}{9}\left(a^{2}+b^{2}+c^{2}\right) . \tag{11}
\end{equation*}
$$

Problem 9. Let a, b, c be the lengths of the sides of $\triangle A B C$ and R its circumradius. Prove that

$$
\begin{equation*}
9 R^{2} \geq a^{2}+b^{2}+c^{2} \tag{12}
\end{equation*}
$$

Theorem. Incircle-excircle Let $A B C$ be a triangle and O its circumcenter, I its incenter, I_{a}, I_{b}, I_{c} the centers of the excircles $\left(k_{a}, k_{b}, k_{c}\right)$ corresponding to the sides $B C, C A, A B$, and G its centroid. Let a, b, c be the side lengths, R the circumradius and r the inradius. Let r_{a}, r_{b}, r_{c} be the exradii and s the semiperimeter of the triangle. Then, the following statements hold:

1. $A I$ intersects the circumcircle at the midpoint Q of the arc $B C . I_{b} I_{c}$ contains the point A and the midpoint P of the arc $B C$ that contains A. The circumcenter O belongs to $P Q$.
2. If M and N are the points of tangency of k_{b} and k_{c} with $B C$, then P is the midpoint of $I_{a} I_{b}, A_{1}$ is the midpoint of $M N$ and $P A_{1}=\frac{r_{b}+r_{c}}{2}$.
3. Denote by U the point of tangency of the incircle with $B C$ and by V the point of tangency of k_{a} with $B C$. Then, A_{1} is the midpoint of $U V, Q$ is the midpoint of $I I_{a}$ and $Q A_{1}=\frac{r_{a}-r}{2}$.
4. $S=\sqrt{s(s-a)(s-b)(s-c)}$.

Problem 10. Prove that

$$
\begin{equation*}
s^{2} \leq m_{a}^{2}+m_{b}^{2}+m_{c}^{2} . \tag{13}
\end{equation*}
$$

Theorem. Erdos-Mordell Let M be a point inside the triangle $A B C$. Denote by A_{1}, B_{1}, C_{1} the feet of perpendiculars from M to $B C, C A$ and $A B$. Then,

$$
\begin{equation*}
M A+M B+M C \geq 2\left(M A_{1}+M B_{1}+M C_{1}\right) . \tag{14}
\end{equation*}
$$

Problem 11. Let M be a point inside the triangle $A B C$. Denote by A_{1}, B_{1}, C_{1} the feet of perpendiculars from M to $B C, C A$ and $A B$. Prove that

$$
\begin{equation*}
\frac{1}{M A}+\frac{1}{M B}+\frac{1}{M C} \leq \frac{1}{2}\left(\frac{1}{M A_{1}}+\frac{1}{M B_{1}}+\frac{1}{M C_{1}}\right) . \tag{15}
\end{equation*}
$$

Part 4: Problems

Problem 12. Prove that

$$
\begin{equation*}
9 r \leq h_{a}+h_{b}+h_{c} \leq l_{a}+l_{b}+l_{c} \leq m_{a}+m_{b}+m_{c} \leq \frac{9}{2} R . \tag{16}
\end{equation*}
$$

Problem 13. Prove that

$$
\begin{equation*}
27 r^{2} \leq h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \leq l_{a}^{2}+l_{b}^{2}+l_{c}^{2} \leq p^{2} \leq m_{a}^{2}+m_{b}^{2}+m_{c}^{2} \leq \frac{27}{4} R^{2} . \tag{17}
\end{equation*}
$$

Problem 14. Prove that

$$
\begin{equation*}
r \leq \frac{\sqrt{\sqrt{3} S}}{3} \leq \frac{\sqrt{3}}{9} s \leq \frac{1}{2} R . \tag{18}
\end{equation*}
$$

