14. February 2023

Part 1: Introduction to Geometric Inequalities

Let us consider a triangle ABC with:

- Sides labeled by a = BC, b = CA and c = AB.
- Angles denoted by $\alpha = \angle A = \angle BAC$, $\beta = \angle B = \angle ABC$, $\gamma = \angle C = \angle ACB$.
- Midpoints of the sides denoted by A_1 (for BC), B_1 (for CA) and C_1 (for AB).
- Feet of the altitudes from A, B, C to the opposite sides labeled by A', B', C', respectively.
- Points of intersection of the internal bisectors and the sides denoted by A'', B'', C''.
- Length of the medians AA_1 , BB_1 , CC_1 denoted by m_a, m_b, m_c .
- Length of the altitudes AA', BB', CC' denoted by h_a, h_b, h_c .
- Length of the segments of internal bisectors AA'', BB'', CC'' denoted by l_a, l_b, l_c .
- Semi-perimeter of the triangle denoted by $p = \frac{a+b+c}{2}$.
- Circumradius of the triangle labeled by *R*.
- Inradius of the triangle labeled by r.
- Radii of the excircles (three circles tangent to one side and the extensions of the other two sides) labeled by r_a, r_b, r_c .
- Area of the triangle S_{ABC} .

Theorem 1. Triangle inequality. If *ABC* is a triangle, then the following two statements hold:

1. The lengths of the sides are related by a < b + c, b < a + c, c < a + b.

Conversely, if a, b, c are positive real numbers such that each is smaller than the sum of the other two, then there exists a triangle of sides a, b, c.

2. AB < BC if, and only if, $\angle ACB < \angle BAC$.

Using only these inequalities and the notation above, we can solve the following problems:

Problem 1. Prove that, for an arbitrary triangle ABC, the following inequalities hold:

$$p < m_a + m_b + m_c < 2p.$$
 (1)

Problem 2. Prove that, for an arbitrary triangle ABC, the sum of its medians is greater than 3/4 of the sum of its sides.

Theorem 2. Ptolemy For any four points *A*, *B*, *C*, *D* in the plane, the following inequality holds:

$$AC \cdot BD \le AB \cdot CD + AD \cdot BC \,. \tag{2}$$

Equality holds if, and only if

- ABCD is cyclic with diagonals AC and BD;
- or A, B, C, D are collinear and exactly one of B, D is between A and C.

Theorem 3. Parallelogram Inequality For every fours points A, B, C, D in the space we have

$$AB^{2} + BC^{2} + CD^{2} + DA^{2} \ge AC^{2} + BD^{2}.$$
(3)

Equality holds if, and only if, ABCD is a parallelogram (or degenerated parallelogram).

Using these theorems, we can solve the following problems.

Problem 3. Let ABC be an acute-angled triangle. Using a straight-edge and compass, construct a point M inside the triangle ABC for which the sum MA + MB + MC is minimal.

Such a point is called *Toricelli point*. Note that, if Q_A, Q_B and Q_C are exterior points to the triangle such that $\triangle BAQ_C$, $\triangle ACQ_B$, $\triangle CBQ_A$ are equilateral, then M is the intersection of AQ_A , BQ_B and CQ_C .

Problem 4. Prove that $h_a \leq l_a \leq m_a$.

Part 2: Geometric Substitution

This is a trick used to solve some inequalities constructed from the sides a, b, c of a triangle. At first sight, the only relation we have between these three numbers is

$$a < b + c, b < a + c, c < a + b.$$
 (4)

However, since A'', B'', C'' are the points of intersection of the internal bisectors and the sides, we have AB'' = AC'', which we denote by x. Similarly, we write y = BA'' = BC'' and z = CA'' = CB''. Then, it is clear that

$$a = y + z, b = z + x, c = x + y.$$
 (5)

Therefore, we have the following result: The following two facts are equivalent for positive real numbers a, b, c

- They are the sides of a triangle.
- There are positive real numbers x, y, z such that a = y + z, b = z + x, c = x + y.

With this trick, we can solve the following problems:

Problem 5. If a, b, c are the lengths of the sides of a triangle, prove that

$$\frac{a}{b+c-a} + \frac{b}{a+c-b} + \frac{c}{a+b-c} \ge 3.$$
 (6)

Problem 6. If a, b, c are the lengths of the sides of a triangle and s is the semi-perimeter of the triangle, prove that

$$a^{2}(p-a) + b^{2}(s-b) + c^{2}(s-c) \le \frac{3}{2}abc.$$
⁽⁷⁾

Part 3: Some important theorems in Geometry

Theorem. Let M be a point on the side BC of the triangle ABC. Then,

$$\overrightarrow{AM} = \frac{\overrightarrow{MC}}{\overrightarrow{BC}} \cdot \overrightarrow{AB} + \frac{\overrightarrow{BM}}{\overrightarrow{BC}} \cdot \overrightarrow{AC} \,. \tag{8}$$

Theorem. Stewart Let M be a point on the side BC of the triangle ABC. Then,

$$AM^{2} = \frac{MC}{BC} \cdot AB^{2} + \frac{BM}{BC} \cdot AC^{2} - BM \cdot MC \,. \tag{9}$$

Problem 7. If a, b, c are the lengths of the sides of a triangle and m_a is the length of the median corresponding to the side a, prove that

$$m_a^2 \le \frac{2b^2 + 2c^2 - a^2}{4} \,. \tag{10}$$

Problem 8. Let O be the circumcenter of the triangle ABC and G its centroid. Prove that

$$OG^2 = R^2 - \frac{1}{9}(a^2 + b^2 + c^2).$$
(11)

Problem 9. Let a, b, c be the lengths of the sides of $\triangle ABC$ and R its circumradius. Prove that

$$9R^2 \ge a^2 + b^2 + c^2 \,. \tag{12}$$

Theorem. Incircle-excircle Let ABC be a triangle and O its circumcenter, I its incenter, I_a , I_b , I_c the centers of the excircles (k_a, k_b, k_c) corresponding to the sides BC, CA, AB, and G its centroid. Let a, b, c be the side lengths, R the circumradius and r the inradius. Let r_a, r_b, r_c be the excadii and s the semiperimeter of the triangle. Then, the following statements hold:

- 1. AI intersects the circumcircle at the midpoint Q of the arc BC. I_bI_c contains the point A and the midpoint P of the arc BC that contains A. The circumcenter O belongs to PQ.
- 2. If *M* and *N* are the points of tangency of k_b and k_c with *BC*, then *P* is the midpoint of $I_a I_b$, A_1 is the midpoint of *MN* and $PA_1 = \frac{r_b + r_c}{2}$.
- 3. Denote by U the point of tangency of the incircle with BC and by V the point of tangency of k_a with BC. Then, A_1 is the midpoint of UV, Q is the midpoint of II_a and $QA_1 = \frac{r_a r}{2}$.

4.
$$S = \sqrt{s(s-a)(s-b)(s-c)}$$

Problem 10. Prove that

$$s^2 \le m_a^2 + m_b^2 + m_c^2 \,. \tag{13}$$

Theorem. Erdos-Mordell Let M be a point inside the triangle ABC. Denote by A_1, B_1, C_1 the feet of perpendiculars from M to BC, CA and AB. Then,

$$MA + MB + MC \ge 2(MA_1 + MB_1 + MC_1).$$
(14)

Problem 11. Let M be a point inside the triangle ABC. Denote by A_1, B_1, C_1 the feet of perpendiculars from M to BC, CA and AB. Prove that

$$\frac{1}{MA} + \frac{1}{MB} + \frac{1}{MC} \le \frac{1}{2} \left(\frac{1}{MA_1} + \frac{1}{MB_1} + \frac{1}{MC_1} \right) .$$
(15)

Part 4: Problems

Problem 12. Prove that

$$9r \le h_a + h_b + h_c \le l_a + l_b + l_c \le m_a + m_b + m_c \le \frac{9}{2}R.$$
(16)

Problem 13. Prove that

$$27r^{2} \le h_{a}^{2} + h_{b}^{2} + h_{c}^{2} \le l_{a}^{2} + l_{b}^{2} + l_{c}^{2} \le p^{2} \le m_{a}^{2} + m_{b}^{2} + m_{c}^{2} \le \frac{27}{4}R^{2}.$$
(17)

Problem 14. Prove that

$$r \le \frac{\sqrt{\sqrt{3S}}}{3} \le \frac{\sqrt{3}}{9}s \le \frac{1}{2}R.$$
(18)