Hausaufgaben zu Algebraische Strukturen / Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Blatt 1

Aufgabe 1 (2 Punkte): Entscheiden Sie bei folgenden Mengen, ob es sich zusammen mit den jeweiligen Verknüpfungen um Gruppen handelt:

- (a) Die Menge $5\mathbb{Z}=\{\dots,-10,-5,0,5,10,15,\dots\}$ zusammen mit der Addition ganzer Zahlen
- (b) Die Menge \mathbb{R}^+ zusammen mit der üblichen Addition
- (c) Die Menge R zusammen mit der üblichen Multiplikation
- (d) Die Menge aller 2×2 -Matrizen zusammen mit der Multiplikation von Matrizen.

Aufgabe 2 (3 Punkte): Gegeben Sei eine Menge Ω . Sei \mathcal{G} die Menge aller Teilmengen von Ω (auch Potentzmenge genannt).

Auf \mathcal{G} sei durch folgende Vorschrift eine Verknüpfung definiert:

$$A \circ B = (A \cup B) \setminus (A \cap B)$$
.

Zeigen sie, dass (\mathcal{G}, \circ) eine Gruppe ist. Wie lautet das neutrale Element? Wie das Inverse einer beliebigen Menge $A \subset \Omega$?

Aufgabe 3 (3 Punkte): Für beliebige $s, t \in \mathbb{R}^+$ sei auf \mathbb{R}^+ folgende Verknüpfung definiert:

$$x \circ y = s(xy)^t$$
.

Für welche Wahl von s, t ist (\mathbb{R}^+, \circ) eine Gruppe. Wie lautet das neutrale Element in Abhängigkeit von s und t? Wie das Inverse zu einer Zahl $x \in \mathbb{R}^+$?

Abgabe eines Lösungspdfs je Gruppe bis Mittwoch, den 02.11.2022, um $8.00\,$ Uhr.