Hausaufgaben zu Algebraische Strukturen / Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Blatt 4

Aufgabe 1 (2 Punkte): Entscheiden Sie bei allen Untergruppen der symmetrischen Gruppe \mathbb{S}_3 ob es sich jeweils um einen Normalteiler handelt. Bestimmen Sie sodann alle Linksnebenklassen der Untergruppe $\{(1,2,3);(1,3,2)\}.$

Aufgabe 2 (2 Punkte): Es seien die komplexwertigen Matrizen $E := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $B := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ und $C := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ gegeben, ferner sei $\mathbb{H} := \{\pm E; \pm A; \pm B; \pm C\}$

Zeigen Sie, dass \mathbb{H} bezüglich der Matrixmultiplikation eine Gruppe ist. Geben Sie alle Untergruppen von \mathbb{H} an und überprüfen Sie jeweils, ob diese Normalteiler von \mathbb{H} sind.

Aufgabe 3 (2 Punkte): Es seien (G, \circ) und (H, \oplus) Gruppen, $f: (G, \circ) \to (H, \oplus)$ ein Gruppenhomomorphisums. Zeigen Sie:

- (a) $N \subseteq G \Rightarrow f(N) \subseteq \text{im} f$.
- (b) Falls ggT(|H|, |G|) = 1 (d.h. |H| und |G| sind teilerfremd) so ist $f(g) = e_H$ für alle $g \in G$.

Aufgabe 4 (2 Punkte): Zeigen Sie, dass alle Gruppen der Ordnung kleiner gleich 5 abelsch sind.

Abgabe eines Lösungspdfs je Gruppe bis Mittwoch, den 14.12.2022, um 8.00 Uhr.