Hausaufgaben zur Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Blatt 2b

Aufgabe 1 (2 Punkte): Gegeben sei die reelle Matrix $A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Wir betrachten die lineare Abbildung $l_A(x) = Ax$ und die Bilinearform $b_A(x,y) = x^T Ay$. Finden Sie eine Basis des \mathbb{R}^2 , bezüglich derer l_A diagonalgestalt hat. Geben Sie die darstellende Matrix von b_A bezüglich dieser Basis an. Was passiert mit den darstellenden Matrizen von l_A und b_A , falls man einen der Basisvektoren mit einem Skalar $\lambda \in \mathbb{R}$ multipliziert?

Aufgabe 2 (2 Punkte): Sei K ein Körper. Zeigen Sie: Die Bilinearform det : $K^2 \times K^2 \to K$ hat in jeder Basis die Darstellung $A := \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$ für $a \in K$, d.h. bei Basiswechsel bleibt die Darstellung bis auf einen Faktor erhalten.

Aufgabe 3 (2 Punkte): Sei K ein Körper mit $\operatorname{char}(K) \neq 2$, V ein endlichdimensionaler Vektorraum über K. Wir betrachten die Menge der Bilinearformen $V \times V \to K$ als Gruppe bezüglich Addition.

- (a) Zeigen Sie, dass die Menge der antisymmetrischen Bilinearformen eine Untergruppe bildet.
- (b) Entscheiden Sie in den folgenden Fällen ob die Untergruppe der antisymmetrischen Bilinearformen zyklisch ist.
 - (i) $K = \mathbb{R} \text{ und } V = \mathbb{R}^2$
 - (ii) $K=K_3$, also der dreielementige Körper, und $V=K_3^2$
 - (iii) $K = K_3 \text{ und } V = K_3^3$.

Aufgabe 4 (2 Punkte): Finden Sie eine symmetrische Bilinearform $b: K_2^2 \times K_2^2 \to K_2$, die in keiner Basis dargestellt, diagonalgestalt hat. K_2 ist hier der zweielementige Körper $\{0,1\}$.

Abgabe eines Lösungspdfs je Gruppe bis Mittwoch, den 23.11.2022, um 8.00 Uhr.