Übungen zu Algebraische Strukturen / Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Tutoriumsblatt 1

Aufgabe 1 (2 Punkte): Entscheiden Sie bei folgenden Mengen, ob es sich zusammen mit den jeweiligen Verknüpfungen um Gruppen handelt:

- (a) Die Menge \mathbb{N}_0 bezüglich der üblichen Addition.
- (b) Die Menge $\mathcal{U} \subseteq \mathbb{Z}$ der ungeraden Zahlen bezüglich der üblichen Addition.
- (c) Die Menge $\mathcal{G} \subseteq \mathbb{Z}$ der geraden Zahlen bezüglich der üblichen Addition.
- (\star) (d) Die Menge $\{0,1\}$ zusammen mit folgender Addition: 0+0=0, 1+0=0+1=1 und 1+1=0. (Wir rechnen also Modulo 2)
- (\star) (e) Die Menge der ganzzahligen 2er Potenzen also $\mathcal{M} = \{2^k \mid k \in \mathbb{Z}\}$, mit der üblichen Multiplikation.

Aufgabe 2 (3 Punkte): Gegeben Sei die Menge \mathbb{Z} . Sei \mathcal{G} die Menge aller Teilmengen von \mathbb{Z} (auch Potentzmenge genannt).

- (a) Zeigen Sie, dass \mathcal{G} mit der Verknüpfung $A \setminus B = \{x \in A \mid x \notin B\}$ keine Gruppe ist.
- (b) Zeigen Sie, dass \mathcal{G} mit der Verknüpfung $A \cup B$ keine Gruppe ist.
- $(\star)(\mathbf{c})$ Zeigen Sie, dass $\mathcal G$ mit der Verknüpfung $A\cap B$ keine Gruppe ist.

Aufgabe 3 (3 Punkte): (a) Wir betrachten die ganze Zahlen \mathbb{Z} mit $a \circ b = a + b + k$ wobei $k \in \mathbb{Z}$ eine beliebige ganze Zahl ist.

Zeigen Sie, dass es sich um eine Gruppe handelt und geben Sie das neutrale Element und das Inverse in Abhängigkeit von k an.

(*) (b) Wir verallgemeinern die Aussage. Sei (\mathcal{G}, \circ) eine kommutative Gruppe. Sei nun $g \in \mathcal{G}$ beliebig. Zeigen Sie, dass es sich bei (\mathcal{G}, \star) mit

$$x \star y = x \circ y \circ g$$

ebenfalls um eine Gruppe handelt.