Übungen zu Algebraische Strukturen / Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Lösungsvorschlag zu Tutoriumsblatt 5a

Aufgabe 1: Wir betrachten die Gruppe $(\mathbb{Z}, +)$. Es sei $18\mathbb{Z} \subseteq \mathbb{Z}$ die Untergruppe der durch 18 teilbaren Zahlen.

a) Bestimmen Sie alle Untergruppen in \mathbb{Z} , die 18 \mathbb{Z} enthalten

Lösungsvorschlag. Die Untergruppen werden genau durch die Teiler von 18 erzeugt, also $\mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}, 6\mathbb{Z}, 9\mathbb{Z}$ und $18\mathbb{Z}$.

b) Bestimmen Sie alle Untergruppen in $\mathbb{Z}/18\mathbb{Z}$

 $L\ddot{o}sungsvorschlag$. Die Untergruppen entsprechen nach Vorlesung genau den Untergruppen aus (a). Schreiben wir wie üblich

$$\mathbb{Z}/18\mathbb{Z} = \{0, 1, 2, \dots, 16, 17\}$$

sind die Untergruppen (in gleicher Reihenfolge wie in (a)) $\{0, 1, 2, \dots, 16, 17\}, \{0, 2, 4 \dots, 14, 16\}, \{0, 3, 9, 12, 15\}, \{0, 6, 12\}, \{0, 9\}$ und $\{0\}.$

Aufgabe 2: Sei G eine Gruppe mit Normalteiler $N \subseteq G$. In der Vorlesung haben wir gesehen, dass $g \mapsto \bar{g} = gN$ ein Gruppenhomomoprhismus $G \to G/N$ ist.

(a) Zeigen Sie, dass der Gruppenhomomorphismus surjektiv ist.

Lösungsvorschlag. Die Abbildung ist quasi per Definition surjektiv. Jede Nebenklasse gN wird durch $g\mapsto gN$ getroffen. \Box

(b) Zeigen Sie, dass er nur für $N=\{e_G\}$ injektiv ist.

Lösungsvorschlag. Falls $N \neq \{e_G\}$ ist, finden wir $e_G \neq n \in \mathbb{N}$ und entsprechend auch $n^{-1} \in \mathbb{N}$. Damit enthält die Nebenklasse nN auch $nn^{-1} = e_G$ und muss damit (da verschiedene Nebenklassen disjunkt sind) bereits die Nebenklasse e_GN sein. Damit haben e_G und n das gleich Bild, die Abbildung ist also nicht injektiv.

(*) (c)	Geben Sie ein Beispiel an, in dem $g\mapsto \bar g$ nicht injektiv ist, G und G/N aber trotzdem isomorph sind.
	Beweis. Wir betrachten das Halboffene Intervall $G=[0,1)$ mit Addition modulo \mathbb{Z} . Also z.B. $0.85+0.4=1.25=0.25$. Man überprüft leicht, dass es sich hierbei um eine abelsche Gruppe handelt.
	Wir betrachten die Untergruppe $N=\{0,0.5\}$. Da N nicht nur das neutrale Element enthält ist die natürliche Abbildung nicht injektiv. Aber $G\to G/N$ mit $g\mapsto \frac{1}{2}gN$ ist ein Isomorphismus. Injektivität folgt, da für alle $0< g< 1$ gilt, dass $0<\frac{1}{2}g<0.5$ und surjektivität folgt, da alle Nebenklassen die Form $x,x+0.5$ haben mit $0\le x<0.5$.
Aufgabe 3: Wir betrachten $G = \mathbb{R}^+ \times \mathbb{R}^+$ mit eintragsweiser Multiplikation.	
(a)	Begründen Sie, dass G eine abelsche Gruppe ist.
	Lösungsvorschlag. Das neutrale Element ist (1,1), die Gruppeneigenschaften folgen direkt aus denen von \mathbb{R}^+ .
(b)	Zeigen Sie, dass $N = \{(x, x) \in G \mid x \in \mathbb{R}\}$ eine Untergruppe von G ist.
	Lösungsvorschlag. Wir betrachten also Elemente der Form (x,x) . Das neutrale Element $(1,1)$ hat diese Form, und das Produkt von (x,x) mit (y,y) ist (xy,xy) und hat auch diese Form. Das Inverse ist $(\frac{1}{x},\frac{1}{x})$ und hat somit wieder die gewünschte Form.
(c)	Zeigen Sie, dass G/N isomorph zu \mathbb{R}^+ ist.
	Lösungsvorschlag. Wir betrachten die Abbildung $f:G\to\mathbb{R}^+,\ (x,y)\mapsto \frac{y}{x}$. Diese Abbildung ist surjektiv, da $f(1,x)=x$ für alle $x\in\mathbb{R}$. Der Kern, also die Elemente die auf das neutrale Element $1\in\mathbb{R}^+$ abbgebildet werden, ist genau N . Damit gilt nach Homomorphiesatz: $G/N\cong\mathbb{R}^+$.
(*) (d)	Interpretieren Sie das Ergebnis geometrisch.
	Lösungsvorschlag. Jeder Punkt $(x,y) \in G$ definiert eine Ursprungsgerade in \mathbb{R}^2 mit positiver Steigung $\frac{y}{x}$. Unsere Abbildung ordnet jedem Punkt diese Steigung zu. Zwei Punkte definieren die gleiche Steigung, falls sie auf der gleichen gerade liegen, falls es also ein $\lambda \in \mathbb{R}$ gibt, sodass $(x_1, y_1) = \lambda(x_2, y_2)$. Genau diese mehrfach Nennung

Teilen wir aus G heraus, indem wir N herausteilen. Denn falls zwei Punkte auf der gleichen Gerade liegen, liegen sie in der gleichen Nebenklasse bezüglich N. G/N ist also die Menge der Geraden mit positiver Steigung und unsere Isomorphie ordnet

den Geraden ihre Steigung zu.

Aufgabe 4: Wir betrachten die Gruppe $G = \{0, 1, \dots, 16, 17\}$ mit Addition modulo 18. Seien weiter $N = \{0, 2, 4, \dots, 14, 16\}$, $H = \{0, 9\}$ und $U = \{0, 3, 6, 9, 12, 15\}$. Bemerkung: In dieser Aufgabe nutzen wir die additive Notation U + N statt UN sowie z + N statt zN für die Nebenklasse.

(a) Geben Sie die Gruppen $H + N = \{h + n \mid h \in H, n \in N\}$ sowie U + N an.

Lösungsvorschlag. Es gilt H + N = G, da die Untergruppe 1 = 9 - 10 = 19 = 1 enthalten muss, und mit dem gleichen Argument U + N = G.

(b) Zeigen Sie, dass $f: H \to (H+N)/N, z \mapsto z+N$ ein Isomorphismus ist.

Beweis. Wir betrachten also die Abbildung $H \to G/N$. Die Abbildung ist injektiv, da der Kern der Projektion genau N ist. Aber das einzige Element in H was auch in N liegt ist die 0.

Die Abbildung ist auch surjektiv. Da |N|=9 und |G|=18 hat G/N nur 2 Elemente, genau wie |H|.

Damit folgt die Surjektivität direkt aus der Injektivität. □

(c) Zeigen Sie, dass $g: U \to (U+N)/N, z \mapsto u+N$ kein Isomorphismus ist.

Lösungsvorschlag. Die Abbildung ist nicht injektiv, da nicht nur 0 auf die Nebenklasse 0+N sonderen auch 6 und 12 alle die gleiche Nebenklasse erzeugen. Das Problem ist dass diesmal der Schnitt $U \cap N$ nicht nur die 0 enthält.