Übungen zu Algebraische Strukturen / Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Tutoriumsblatt 6a

Aufgabe 1: Sei S_n die symmetrische Gruppe aus Permutation von $n \geq 2$ Elementen. Seien $x_1, x_2 \in \{1, \ldots, n\}$ paarweise verschieden. Wir betrachten die Transposition $(x_1 \ x_2)$, die x_1 und x_2 tauscht. Sei $\pi \in S_n$ eine beliebige Permutation.

- (a) Zeigen Sie, dass $\pi \circ (x_1 \ x_2) \circ \pi^{-1} = (\pi(x_1) \ \pi(x_2)).$
- (b) Berechnen Sie in S_4 : (1 2 3 4)(1 2)(4 3 2 1)
- (c) Seien zusätzlich $y_1, y_2 \in \{1, \dots, n\}$ paarweise verschieden. Zeigen Sie, dass

$$\pi \circ (x_1 \ x_2)(y_1 \ y_2) \circ \pi^{-1} = (\pi(x_1) \ \pi(x_2))(\pi(y_1) \ \pi(y_2)).$$

Aufgabe 2: Wir betrachten die Untergruppe $A_4 \leq S_4$ der geraden Permutationen in S_4 .

- (a) Wie viele Elemente hat S_4 bzw. A_4 ?
- (b) Zeigen Sie: $U = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ ist Untergruppe in A_4 .
- (c) Zeigen Sie: U ist Normalteiler in A_4 (Tipp: Aufgabe 1c).
- (\star) (d) Sei $\pi \in S_4$ mit $o(\pi) = 3$. Zeigen Sie, dass $\pi \in A_4$.

Aufgabe 3: Wir betrachten die vierelementige Menge $K = \{0, 1, a, b\}$ und definieren $a^2 = b$ sowie $b^2 = a$.

Wir möchten eine (kommutative) Addition und Multiplikation auf K definieren, sodass obige Regeln beachtet bleiben und K zum Körper wird (hierbei soll 0 bzw. 1 das additiv bzw. multiplikativ Neutrale sein).

- (a) Zeigen Sie, dass ab = 1 gelten muss.
- (b) Zeigen Sie, dass $1+a\neq 0$ und $1+b\neq 0$ und schließen Sie, dass char K=2.
- (\star) (c) Bestimmen Sie a+b.

Aufgabe 4: Sei p eine Primzahl. Wir betrachten den Körper $K_p = \mathbb{Z}/p\mathbb{Z}$ und das Polynom $x^3 - 1$ über K_p .

- (a) Finden Sie ein p, sodass $x^3 1$ genau eine Nullstelle über K_p hat.
- (\star) (b) Finden Sie ein p, sodass x^3-1 mehr als eine Nullstelle über K_p hat.