Übungen zur Linearen Algebra 2

Prof. Dr. P. Pickl Kajetan Söhnen

Tutoriumsblatt 6b

Aufgabe 1: Sei V ein endlich dimensionaler \mathbb{R} Vektorraum. Zeigen Sie, dass für jedes Element $x \in \mathbb{R}^3 \otimes V$ eindeutige $v_1, v_2, v_3 \in V$ existieren, sodass

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \otimes v_1 + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \otimes v_2 + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \otimes v_3.$$

Aufgabe 2: Seien V, W zwei endlich dimensionale reelle Vektorräume mit Basis v_1, \ldots, v_n bzw. w_1, \ldots, w_m und Skalarprodukt $\langle \cdot, \cdot \rangle_V$ bzw. $\langle \cdot, \cdot \rangle_W$. Wir definieren

$$\langle v_i \otimes w_j, v_k \otimes w_l \rangle_{\otimes} = \langle v_i, v_k \rangle_V \cdot \langle w_j, w_l \rangle_W$$

auf der Basis und setzen die Abbildung dann bilinear fort.

- (a) Zeigen Sie, dass falls $v_1, \ldots v_n$ und $w_1 \ldots w_m$ jeweils Orthonormalbasen von V bzw. W sind, $v_i \otimes w_j$ eine ONB von $V \otimes W$ bzgl. $\langle \cdot, \cdot \rangle_{\otimes}$ ist.
- (\star) (b) Zeigen Sie, dass es sich bei $\langle \cdot, \cdot \rangle_{\otimes}$ um ein Skalarprodukt auf $V \otimes W$ handelt. (Sie dürfen annehmen, dass es sich bei den drei Basen um ONBs handelt).

Aufgabe 3: Sei V ein endlich dimensionaler reeller Vektorraum. Zeigen Sie, dass $V_{\mathbb{C}} \simeq V \oplus Vi = \{a+bi \mid a,b \in V\}$. (Als \mathbb{C} Vektorräume)

Aufgabe 4: Seien V, W zwei reelle Vektorräume und $f: V \to W$ ein (reell) lineare Abbildung.

- (a) Zeigen Sie, dass $f_{\mathbb{C}}: V_{\mathbb{C}} \to W_{\mathbb{C}}$ mit $f_{\mathbb{C}}(a+bi) = f(a) + if(b)$ eine komplex lineare Abbildung ist.
- (b) Bestimmen Sie idc
- (\star) (c) Zeigen Sie, dass für lineares $g:W\to U$ gilt, dass $(g\circ f)_{\mathbb{C}}=g_{\mathbb{C}}\circ f_{\mathbb{C}}$.