Mathematik 1 für Naturwissenschaftler*innen

Übungsblatt 10 (Abgabe am 23.12.2022)

Aufgabe 53 (6 Punkte)

Seien $\vec{a}_1, \vec{a}_2, \vec{a}_3$ wie in Aufgabe 52 und $U = \operatorname{span}(\vec{a}_2, \vec{a}_3) \subset \mathbb{R}^3$.

- a) Verwenden Sie in diesem Aufgabenteil das kanonische Skalarprodukt auf \mathbb{R}^3 und die zugehörige Norm.
 - Bestimmen Sie mithilfe von Gram-Schmidt eine ONB von U.
- b) Verwenden Sie in diesem Aufgabenteil das Skalarprodukt aus Aufgabe 52e und die zugehörige Norm.

Bestimmen Sie mithilfe von Gram-Schmidt eine ONB von U.

Aufgabe 54 (keine Abgabe)

Gilt $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ für beliebige $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$? Begründen Sie Ihre Antwort.

Aufgabe 55 (3+2+2 = 7 Punkte)

Seien $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{b} \in \mathbb{R}^3$ gegeben. Wir betrachten das LGS

$$x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3 = \vec{b}$$
 für $x_j \in \mathbb{R}$, $j = 1, 2, 3$.

- a) Bilden Sie das Kreuzprodukt mit \vec{a}_2 von rechts und anschießend das Skalarprodukt des Ergebnisses mit \vec{a}_3 . Lösen Sie nun – wenn möglich – nach x_1 auf.
- b) Beschaffen Sie sich analoge Lösungsformeln für x_2 und x_3 .
- c) Welche Bedingung müssen die \vec{a}_i erfüllen, damit wir mithilfe der Formeln aus (a) und (b) wirklich die Lösung des LGS erhalten?

Aufgabe 56 (8 Punkte)

Bestimmen Sie die Polardarstellung der folgenden Punkte (x, y) aus \mathbb{R}^2 :

a)
$$(1, \sqrt{3})$$

b)
$$(-2,2)$$

c)
$$(\sqrt{3}, -1)$$

c)
$$(\sqrt{3}, -1)$$
 d) $(-\sqrt{2}, -\sqrt{2})$

Aufgabe 57

$$(4+4+4=12 \text{ Zusatzpunkte})$$

Die Lösungsmenge des folgenden LGS ist eine Ebene E_1 im \mathbb{R}^3 ,

$$2x_1 + 1 + 9x_3 = x_2.$$

a) Geben Sie eine Parameterdarstellung sowie die Hessesche Normalform von E_1 an. Welchen Abstand hat die Ebene vom Ursprung?

Die Ebene E_2 im \mathbb{R}^3 ist gegeben als

$$E_2 = \left\{ \vec{x} \in \mathbb{R}^3 \middle| \vec{x} = \begin{pmatrix} 1\\11\\1 \end{pmatrix} + t \begin{pmatrix} -1\\6\\1 \end{pmatrix} + s \begin{pmatrix} -3\\2\\1 \end{pmatrix}, \ s, t \in \mathbb{R} \right\}.$$

- b) Geben Sie die Hessesche Normalform von E_2 an.
- c) Bestimmen Sie die Schnittmenge von E_2 und E_1 .