Groups and Representations

Homework Assignment 3 (due on 8 November 2023)

Problem 9

Let $\phi : SL(2, \mathbb{C}) \to O(3, 1)$ be the homomorphism to the Lorentz group, as introduced in the lectures. Let $\alpha, \beta \in [0, 2\pi], r > 0$ and

$$U = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \qquad V = \begin{pmatrix} e^{-i\beta} & 0 \\ 0 & e^{i\beta} \end{pmatrix}, \qquad B = \begin{pmatrix} r & 0 \\ 0 & \frac{1}{r} \end{pmatrix}.$$

Show:

a) $\phi(U)$ is a rotation about the x_2 -axis by an angle 2α .

- b) $\phi(V)$ is a rotation about the x_3 -axis by an angle 2β .
- c) $\phi(B)$ is a boost in x_3 -direction, i.e.

$$\phi(B) = \begin{pmatrix} \cosh t & 0 & 0 & \sinh t \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh t & 0 & 0 & \cosh t \end{pmatrix}$$

for some $t \in \mathbb{R}$.

Problem 10

 CO_2 is a linear molecule; in its ground state the carbon atom sits in the middle between the two oxygen atoms. The symmetry group of this system is isomorphic to the Klein four group $V_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and has the following elements: the identity (e), reflections (σ_x and σ_y) across the x- and y-axis, respectively, and a rotation (R) by 180° about the origin.

A coplanar vibration entails displacements of the 3 atoms in a fixed plane. It can be characterised by a vector $(x_1, y_1, x_2, y_2, x_3, y_3) \in \mathbb{R}^6$.

Determine the action of the symmetry group on the canonical basis of \mathbb{R}^6 . Write down the resulting six dimensional representation of V_4 .

Problem 11 (Continuation of Problem 9)

Let $\Lambda \in O(3, 1)$ be time orientation preserving, i.e. $d(e_0, \Lambda e_0) > 0$. Show that there exist $U, V \in O(3)$ and a boost B in x_3 -direction, such that

$$\Lambda = UBV \,.$$

HINT: First consider Λe_0 and find U and B such that $B^{-1}U^{-1}\Lambda e_0 = e_0$.

Problem 12

Let D_4 be the symmetry group of a square. We denote by R the rotation by $\frac{\pi}{2}$ and by σ the reflection across the diagonal through the lower left and upper right corner. We write all group elements as $R^k \sigma^{\ell}$ for some k and ℓ . (Why is this possible and which values do k and ℓ take?)

- a) Find all conjugacy classes. HINT: Determine $\sigma R \sigma$ first, this simplifies calculations a lot.
- b) Determine all normal subgroups and the isomorphism types of the corresponding quotient groups (i.e. name known groups to which they are isomorphic).
- c) Is D_4 isomorphic to a direct product of non-trivial subgrous?

Problem 13

Let $(\mathbb{R}, +)$ be the additive group of real numbers, and

$$\Gamma(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad x \in \mathbb{R},$$

a representation on \mathbb{C}^2 . Find all invariant subspaces. Is Γ completely reducible?