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1 Introduction

1.1 Why groups? Why representations?

Groups are
... ubiquitous,
...come in many different guises.

In this course: mainly finite groups & compact Lie groups.
(There’s much more, but our selection is not only interesting in its own right, it’s also a

good starting point.)

Representations (reps)

.. (very roughly) study groups using vector spaces (linearity!),

.. convenient,

..in this course mostly vector spaces over C, sometimes over R, probably never over
finite fields (again this is a good starting point for everything else),

.. tell us something about the group in question,

..are how groups often show up in applications, e.g. in physics (quantum mechanics,
atomic energy levels, selection rules, masses in particle physics,. .. ).

Course plan (very roughly)

...develop rather complete theory for reps of finite groups (on complex vector spaces),
...study symmetric groups (and reps) in some details,

...see what we can carry over / what is new for (compact) Lie groups.



1.2 Basic notions

Definition: (group)
Let G # ) be a set and let o be an operation o : G X G — G. We call (G, o) a group if:

(Gl) a,b € G = aob e G (closure)
(already implied by o : G x G — G)

(G2) (aob)oc=ao(boc)V a,b,ce G (associativity)
(G3) deeGwithaoe=a=eoaV aec G (identity / neutral element)
(G4) for eacha € GIa ' € G withaoa™ ' =e=a"'0a, with e from (G3) (inverses)

If it is clear from the context which operation we talk about, then we often just write G
instead of (G, o).

Definition: (abelian group)
A group (G, o) is called commutative or abelian, if in addition we have:
(Gb) aocb="boaV a,be G (commutativity)

Remarks:
1. The identity e is unique.
2. For each a € G the corresponding inverse is unique.

3. Often we call the operation multiplication (or group multiplication) and write
a - b or just ab instead of a o b.

4. If the number of group elements is finite, we speak of a finite group, and we call the
number of group elements the order |G| of the group. (otherwise: infinite group).

5. A finite group (order n) is completely determined by its group table (or multiplication
table) (with n? elements)

lelalb|c|
elelal b| c
alala®|ab)|ac
bilb|balb®]| b
clleclecalech|c?

Fact: No two elements within one row (or column) can be the same. (sce exercises)
This implies the rearrangement lemma: If one multiplies all elements of a group
{e,a,b,c,...} by one of the elements, one obtains again all elements, in general in a
different order.

In other words: Each row and each column in the group multiplication table contains
each of the group elements exactly once.



Examples:
1. (Z,+): e=0,a"! = —a for a € Z (abelian); analogously (R, +) or (C, +)
2. (R\{0},): e=1,27' = L for z € R (abelian); analogously (Q\ {0},-) or (C\ {0},")
3. G: set of all symmetry operations (rotations, reflections, ... ), which leave a certain
object (atom, molecule, geometrical object?; ...) invariant.
o: subsequent application of operations.
G can be finite (e.g. for a cube) or infinite (e.g. for a sphere) — in general non-abelian.

Definition: (subgroup)
Let (G, 0) be a group. A subset H C G, which satisfies (G1)—(G4) (with the same operation
o), is called a subgroup of G.

Remarks:

1. Every group has two trivial subgroups: {e} and G.
All other subgroups are called non-trivial.

2. |G| (if finite) is divisible by |H|. (will be proved later)
Definition: (homomorphism)

Given two groups (G, o) and (G',e), amap f: G — G is called a homomorphism, if

flaob) = f(a)e f(b) Vabeq.

Remarks:

1. A homomorphism f maps the identity to the identity and inverses to inverses, more

precisely f(eg) = eq and f(a™') = f(a)™' Va € G.
2. The image of the homomorphism [ : G — G’ is

im(f) = f(G) ={f(g) : g € G},

the kernel of f is the preimage of the identity of G’ ,

ker(f)={g€ G : f(g) =eqx}.

Definition: (isomorphism)

A bijective homomorphism f : G — G’ is called isomorphism. We then say that G and G’
are isomorphic, and write G = G'.

Remark:

1. Isomorphic groups have the same group table, i.e. they are identical except for what
we call their elements (and the group operation). (correspondingly for infinite groups)

2For a mattress (rectangle) we obtain the Klein four-group, see e.g. https://opinionator.blogs.
nytimes.com/2010/05/02/group-think/



1.3 Examples & outlook

1. A group of the kind
{e,a,aQ,...,a"’I}, a" =e,

~
pairwise different

is called cyclic group C,
The smallest non-cyclic group is of order 4.
The smallest non-abelian group is of order 6.

2. A group with two elements: {e,a}
We have: ee = e, ea = a and ae = e.
What about aa? (=a or =e)
Group table:

:

9]
)
o

...only possibility since we cannot have an element twice in one row or column, (see
above)

This is Cy. (sec example 1)

= Any group of order 2 is isomorphic to Cs;

in particular Cy = Zy := ({0, 1}, + mod 2).

3. Examples for groups isomorphic to Zs:
(a) Consider the following two maps R" — R",
e:Tr— T,
P:Zw— —& (parity).
group operation: composition of maps
= ecoe=¢e,eoP=P Poe= P, PoP =e,ie. isomorphic to Zy. (it has to)

(b) Instead of the two spatial transformations consider now
operators acting on (real- or complex-valued) functions f of z:

(0f)(7) = f(Z)
(Opf)(Z) = f(=T)
= 0?=0,, 0.0p = Op, OpO, = Op, O% = O,, i.e. isomorphic to Zs.

Remark: These operators are linear, i.e.

O(af + Bg) = aO(f) + BO(g)



(c) Consider operators acting on complex-valued functions of two variables
(physics: wave function of two particles)

(OpY)(Z1, Z2) = (T, T2)
(Os)(Z1, @2) = (2, T1)
Ogv =0g... = {OE,OS} = 7o

(different names than operators in example 3b in order to emphasise the different
realisations)

. . . .. 2023-10-17
When we will have learned about group actions and representations, we can revisit these

examples from a different point of view, not just as homomorphisms.

Z5 looks rather innocent, but many concepts which we want to discuss in the following can
already by illustrated for Zs.

4. Consider now example 3b and two functions f, and f, with

(Opf) () = fo(Z) “even parity”
(Op fo)(Z) = = [o(T) “odd parity”

(e.g. T = @) € R3, f(T) = 2% +yz, fo(T) = zysinz)

fe und f, show a special behaviour under application of {O., Op}:
e f. is invariant under Op
e f, only changes the sign under Op

Applications of group and representation theory in physics take advantage of the invariance
of subspaces formed by even or odd functions, respectively; similarly for more complicated
groups, as we will see later.

5. The identity (if integral exists)
fe(@) fo(@) A"z =0
R4
is an example for an “orthogonalty relation” between objects with special symmetry
properties (“selection rule” in quantum mechanics; more later).

6. Any function can be written as a sum of an even and an odd function

f:fe“f_fo with fe: (f(f)—i_f(_f))

N~ N -

This illustrates that we can expand “objects” without special symmetry properties
into linear combinations of “objects” with special symmetry properties.



1.4 Permutations — the symmetric group
Definition: (symmetric group)
The symmetric group of degree n, S,, are the bijections of {1,2,...,n} to itself under
composition.
Remarks:
1. Elements of S,, are called permutations.
2. 1S, =n!
3. two-line notation: write image of first line in second line, e.g.
G o (123456
627T=\6 4125 3
means m(1) =6, 7(2) =4, ...
4. Every permutation can be written as a product of disjoint cycles, e.g.
123456 o
T= (6 1192 5 3> = (163)(24)(5) 3-cycle, 2-cycle, 1-cycle
= (163)(24) usually omit 1-cycles
e where (163) means (1) =6, 7(6) = 3, 7(3) = 1, and thus
(163) = (631) = (316) but # (136).
e Disjoint cycles commute, e.g. (163)(24) = (24)(163).
e Every (-cycle (¢ > 2) can be written as a product of 2-cycles (transpositions),
e.g.
(163) = (13)(16)
where (13)(16) is shorthand for (13) o (16).
5. diagrammatic birdtrack notation: for 7 € 5, draw lines which end in position 1,....n
on the right and in position 7(1),...,7(n) on the left, e.g. m,0 € Ss,

7T:(132):%’ o= (12) = ><,

and for composition we compose diagrams and twist lines at will (it only matters

where lines end),
s XS - e



Examples:
1. Sy ={e,(12)} = Zy
2. S3={e, (12),(13),(23),(123), (132) }
e group table: see exercises

e S3 is non-abelian (the smallest non-abelian group), as are all S,, with n > 3,
since e.g.

(12)(13) = (132) # (13)(12) = (123).

e subgroups: {e} and Sj (trivial)

{e.(12)}, {e, (13)}, {e, (23)}, all = Z,
{e, (123),(321)} = C;

Theorem 1. (Cayley)
Every group of order n is isomorphic to a subgroup of S,,.

Proof:

Write in a slightly unorthodox way by explicitly using properties of the group table — just
to keep Problem 1 interesting.

Let (G,-) be a finite group, |G| = n. For h € G define

on:G—>G
g—on(g)=h-g.

¢, permutes the n elements of G (since it yields a row of the group table). Now

fr9— ¢
G— G :={p,:9€G}

is a homomorphism, because (i)

(a0 ©b) (9) = Ca (@p(9)) = wa(b-g9) =a-b-g=as(g),

and because (ii) f is injective (otherwise there would be two equal lines in the group table
of G),ie. G=G.

Further, G’ contains only permutations of the n elements of G, i.e. G’ is isomorphic to a
subgroup of S,,. U

1.5 Group actions

Definition: (group action)
Let G be a group and M a set. A (group) action of G on M is a map

GxM-—->M
(g,m) — gm,

10



which satisfies

em=m VmeM and
g(hm) = (gh)ym Vg,heGandVme M.

Remark: Thus, M — M, m — gm, is bijective for each (fixed) g € G, since
gmy = gmy = g tgmy = g Lgmy < my = my (injective) and

m € M = gm’ = m with m’ = g~!'m (surjective).

Definition: (orbit)

The orbit of the point m € M under an action of a group GG on M is defined as

Gm={gm : g € G}.

Remarks:
1. The orbit of a “typical” point contains n = |G| elements.
2. The orbit of a “special” point contains less than n = |G| elements.

Example:
Consider D3, the symmetry group of an equilateral triangle (“D” for dihedral group).
D3 = S3 (permutations of the triangle’s corners).

Group elements: e identity
e 2 rotations (about 120° and 240°)
e 3 reflections (axes through each of the corners)

Dj acts naturally on M, a plane with the origin in the centre of the triangle.

special point typical point
(orbit with 1 element) / (orbit with 6 elements)

special points
(orbits with 3 elements)
Definition: (stabiliser)

Let G x M — M, (g,m) — gm, be an action of G on M. The set of group elements that
map a given m € M to itself, i.e.

Gm:{geG:gm:m}7

is called stabiliser (or isotropy group or little group) of m.

Remark: G, is a group (see exercises).

11



For the Ds-example (see above):
e the stabiliser of x ist {e}
e the stabiliser of o ist Ds
e the stabiliser of e ist {I,0} = Z,, where o is the reflection across the axis though e

Notice that in all three cases |Gm| - |G,,| = |G|. This is true in general for finite groups
(orbit-stabiliser theorem, see exercises).

2023-10-19

1.6 Conjugacy classes and normal subgroups

Definition: (conjugation)
Let G be a group. We say x € GG is conjugate to y € G s dJge G : y=gvg
We then write x ~ y. -

Remark:
~ defines an equivalence relation, since

1. reflexivity: © ~x V o € G (with g = e).
2. symmetry: x ~y <y~ z (with g <> g71)

1

3. tramsitivity: z ~yundy~z =12~z (y=grg ',z =hyh™' = 2= (hg)z(hg)™")

Examples:
1. G =S5 (13) ~ (12), since (23)(12) (23)~! = (13)
=(23)

2. G = S0(3), group of spatial rotations in 3 dimensions:
Ri7(¢) = rotation about axis 7 by angle ¢
For arbitrary R € SO(3) we have RR;(¢)R™ = Ry(¢) with i’ = Rii, i.e. rotations

by the same angle but about different axes are conjugate to each other.

Definition: (conjugacy class)

For a group G and z € G we call {gzg™*

: g € G} the conjugacy class of z.
Remarks:

1. The class of e contains only e, since geg~! =e V g.

2. For abelian groups each element forms a class of its own, since gzg ' =z V g.
3. In general a class is not a subgroup (cf. below).
4

. Each element of G is contained in exactly one class, since it’s an equivalence rela-
tion. .. transitivity.

5. |G| is divisible by the number of elements of each conjugacy class. (orbit-stabiliser
theorem, cf. exercises).

6. Later: The number of conjugacy classes is equal to the number of non-equivalent
irreducible representations of a group.

12



Example: S;3
First class: {e}.
Now conjugate (12) with all elements of S,

e(12)e = (12)
(12)(12)(12) = (12)
(13)(12)(13) = (23)
(23)(12)(23) = (13)

(123)(12)(132) = (23)
(132)(12)(123) = (13)

i.e. (12), (13) and (23) form a class.
For the remaining two elements we have

(12)(123)(12) = (132)

i.e. (123) ~ (132) and thus contained in the same class.
We found 3 classes:

Ce={e},  Cuz=A{(12),(13),(23)},  Cuas = {(123),(321)}.
Notice: Two elements of S3 are conjugate if they have the same cycle structure; this is true
for S, in general (later).
For D3 = S3: C(19) — reflections , C(123) — rotations
Definition: (conjugate subgroups, normal subgroup)

(i) We call a subgroup K C G conjugate to a subgroup H C G if 3¢ € G such that
K=gHg'={ghg' : he H}.
(i) If ghg™' € HVh € H und Vg € G then we call H a normal subgroup (or invariant
subgroup) of G.

Examples:

1. The subgroup K = {e, (13)} C Ss is conjugate to H = {e, (12)}, since (23)e(23)~! =
e und (23)(12)(23)~! = (13).

2. Every group has two trivial normal subgroups: {e} and G.
3. The only non-trivial normal subgroup of Ss is {e, (123), (132)}.
Remark: A finite group is called simple if it has no non-trivial normal subgroup.

Thus, S5 is not simple.

13



1.7

Cosets and quotient groups

Definition: (coset)
Let G be a group and H C G a subgroup. For g € GG the set

gH :={gh:h e H}

is called a left coset of H (in G). Similarly we call

Hg:={hg:he H}

a right coset of H.

Remarks:

1.
2.
3.

gH,Hg C G.
If g€ H = gH = Hg = H (rearrangement lemma, cf. Problem 1).

The number of elements of a coset is equal the order of the subgroup,
shortly |gH| = |H].

In the following we consider mostly left cosets.

Two cosets g H and goH are either identical (< g;'gs € H)
or disjoint.
Proof: Assume that there is a common element, i.e.
dhy,he € H @ gihy = gohy
& go = gihihy
= goH = glhlhng =g H O
Since each g € G is element of exactly one coset, and since |gH| = |H|, it follows
that H divides |G| (cf. 1.2).3

Example:
For S3: Let H; = {e,(12)} (not normal) and Hy = {e, (123), (132)} (normal).

e Left and right cosets of Hi:

eH; ={e, (12)} Hie ={e, (12)}
(12)Hy = {(12), ¢} Hy(12) = {(12), ¢}
(13)H, = {(13), (123)} Hy(13) = {(13), (132)}

(123)H, = {(123), (13)} H,(132) = {(132),(13)}
(23)H, = {(23), (132)} H,(23) ={(23),(123)}
(132)H, = {(132),(23)} H,(123) = {(123),(23)}

Left and right cosets are different, and, e.g.

3 Alternatively, we could define an action of G' on G by left multiplication and then invoke the orbit-
stabiliser theorem.

14



e Cosets of Hy:

eH, = {e, (123), (132)} Hoe = {e, (123), (132)}
(123)H, = {(123), (132), ¢} Hy(123) = {(123), (132), ¢}
(132) H, = {(132), ¢, (123)} H,(132) = {(132), e, (123)}
(12)H, = {(12), (23), (13)} Hy(12) = {(12), (13), (23))
(13)Ha = {(13),(12), (23)} H,(13) = {(13),(23), (12)}
(23)H> = {(23), (13), (12)} Hy(23) = {(23), (12), (13)}

Left and right cosets are identical, and, e.g.
Sy = Hy U (12)H,
Generally: If H is a normal subgroup of G then left and right cosets are identical, since
gHg'=H & gH=Hg.
Then the partitioning of G into cosets is unique.

If H is normal, then the cosets form a group. ..

Definition: (quotient group)
Let H be a normal subgroup of G. We define the quotient group (G/H,-) as the set of
cosets,

G/H :={gH : g € G},
with the group law

(i H) - (92H) = (9192) H .

Remarks:
|G/H| = |H\
2. (G/H,-) is actually a group, since
(G1) 91,92 € G = (q192)H € G/H,
(G2) associativity of G carries over to G/H,
(G3) eq/w = H, because gH - H=gH = H - gH, and
(G4) the inverse of gH is g 'H, because gH - g"'H = H = g~'H - gH.

3. Where did we need that H is normal (i.e. gHg™! = HY g € G)? Otherwise, in
general the group law - isn’t a well-defined map G/H x G/H — G/H. Replacing H
by hH with some h € H must not change the result, but

(gihH) - (92H) = (g1hg2)H ~ #  (9192)H

in general
= (919295 'hg2) H
However, if H is normal then g, 'hg, € H und thus (g192 g5 'hg2)H = (g192) H.

15



Examples:
o Hy =1{e,(123),(132)} C S5 is normal. The quotient group S3/H> has two elements,

{e,(123),(132)}  and  {(12),(13),(23)}

and is thus isomorphic to Zs.

e H; ={e,(12)} C S; is not normal, e.g. (123)(12)(123)"! = (23) ¢ Hy, and thus - is
not well-defined, e.g.

(eHy)((13)Hy) = (1

3)Hy = {(13), (123)}
7 (12)Hy) - (

(13)Hy) = (12)(13)H, = (132)H; = {(132),(23)}.

1.8 Direct product

Definition: (direct product)
For two groups (A, o) and (B, e) the direct product is the Cartesian product A x B with

group law
(Clh bl) (a2> 52) (al oap, b e 52)

Remarks:
1. eaxp = (ea,ep) and (a,b)" ' = (a1, b71).
2. For finite groups |A x B| = |A[|B|.
3. G := A x B has a normal subgroup isomorphic to A, namely

2023-10-24

(Ayeg) ={g€ G : g=(a,ep) witha € A}.
“normal” since for a; € A and (ag,bs) € G we have

glar,ep)g™" = (az,bo)(ar, ep)(ay ", b3") = (aparay ', baepby ') = (asaray’' ep).
——

Similarly for B.Furthermore A = G/B (and vice versa):! .

G/B ={(a,b)B : (a,b) € G} ={(a,B) : a € A} (rearrangement lemma)

Caveat: In general, for a normal subgroup H of G, G 2 H x (G/H) (since in general
G/H isn’t a normal subgroup® of G).
Example: S3 has subgroups H; = {e, (12)} and Hy = {e, (123), (132)}.
H, is normal.
Ss/Hy = 7y = Hy, but S5 22 Hy x Hs, since Hy isn’t a normal subgroup,
or, in other words, the elements of H; und Hy don’t commute.

“here B is shorthand for (e, B)
°In general G/H doesn’t even need to be isomorphic to a subgroup of G.

16



1.9 Example:
The homomorphism from SL(2,C) to the Lorentz group

e Let M be the Minkowski space, i.e. M = R* with the Lorentz metric®
l]* = 2§ — @] — 25 — 23.
We call z = (xq, 1, T2, x3) a four-vector.

e A (homogeneous) Lorentz transformation A is a linear map M — M, which preserves
the Lorentz metric, i.e.

[Agl? = al?  Vwe M.
e The Lorentz group L = O(3,1) is the group of all (homogeneous) Lorentz transfor-

mations.

e Identify each x € M with a Hermitian 2 x 2 matrix:’

X = f(x) ==zl + 2101 + 2209 + 2303 with

1— 10 (01 (0 —i (1 0
—o1) 7o) 2T o0) 270 —1)
ie. X — (Z’O —|—..§C3 1 — 11’2)
T +1Te X — T3
The o; are called Pauli matrices. It follows that
det X = af — 27 — 23 — 23 = ||z||*.
e Let now A € GL(2,C) := {B € C**? : det B # 0} (group under matrix multiplica-
tion). Define an action of GL(2,C) on C**? by
C¥? 5 X s AXAT
and denote the induced action on M by
M >z g(A)x = fTHAf(2)AT).
e We have (AXA")T = AXAT ie. AXA' is Hermitian and thus ¢(A)x is a (real)

four-vector. Furthermore,
lp(A)z|* = det(AX AT) = |det A]* det X = |det A?||z||?.
e With A € SL(2,C) := {B € C**? : det B =1} we have
le(A)z||* = [|=?,

i.e. ¢(A) corresponds to Lorentz transformation.

Smore precisely ||z||? = d(x, x) with the pseudo-Riemannian metric d(z,y) = zoyo — T1y1 — TaY2 — T3Y3.

"The Hermitian 2 x 2 matrices form a (real) four-dimensional vector space, a basis of which is given by
1 and the Pauli matrices.
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e Furthermore,
S(A)S(B) = §(A) [ (BF(2)BT) = [~ (ABf(x)B'AT) = 6(AB)z
ie. ¢:SL(2,C) — O(3,1) is a group homomorphism.
e ¢ is no isomorphism, since ¢(—A) = ¢(A) (not injective).

e Examples (see exercises):

1. For the matrix

®(Uy) is a rotation about the xz-axis by the angle 20.

2. For the matrix

cos — Sin o
sinav  Cos«

¢»(V4) is a rotation about the z5-axis by the angle 2a.

(7 O
=0 1)

®(M,) is a Lorentz boost in z3-direction with parameter 2In(r).
By the way: The boosts alone (in arbitrary directions) do not form a group.

3. For the matrix

The homomorphism ¢ : SL(2,C) — O(3,1) isn’t surjective either:

e SL(2,C) is (path-)connected (without proof).
e O(3,1) is disconnected (four connected components).

— proper Lorentz transformations: det A = +1
improper Lorentz transformations: det A = —1

— orthochronous (time direction preserving) Lorentz transformations: Agy > 1
non-orthochronous Lorentz transformations: Agg < —1

— only the proper, orthochronous Lorentz transformations are in the same con-
nected component as e. They form the subgroup L°.

e im(¢) = L° (cf. exercises).
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Homomorphism from SU(2) to O(3)

e SU(2) is the group of unitary 2 x 2 matrices with unit determinant 1, i.e.

SU(2) :={A € C??2 : AAT =1 and det A =1} C SL(2,C).

e How does A € SU(2) € SL(2,C) act on ¢y = (1,0,0,0)?
Ey := f(ep) = 1 and thus

Ey = AEG AT = A1AT=1=E, ie. ¢(Aey = eo.

e O(3):={ReR¥>3 : RRT =1} is the group of orthogonal 3 x 3 matrices.

e For a Lorentz transformation of the form

1 0 .
A:(O R) with R € O(3)

we have Aey = ey (and vice versa), i.e. these transformations form a subgroup of
O(3,1) which is isomorphic to O(3).®
Thus, ¢ is also a homomorphism SU(2) — O(3).

— It is once more 2-to-1, since ¢(A) = ¢(—A).

— Similar to the analysis above, A € SU(2) is mapped to such ¢(A) € O(3)
which lie in the connected component of 1, i.e. those with determinant 1, i.e.

¢(SU(2)) = SO(3).

80ne also says: O(3) is a subgroup of O(3,1).
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2 Representations

We will rarely, if ever, fiz an explicit basis,
but thinking this way makes it easier to
manipulate tensorial objects.

Predrag Cvitanovié¢

2.1 Definitions

Definition: (representation)
Let G be a group and V' a vector space. A representation (rep) I' of G is a homomorphism
G — GL(V), i.e. into the bijective linear maps V' — V| i.e. in particular

[(g)l(h) =T(gh) Vg,heG

and I'(e) = 1 (identity matrix/operator). We call dim V' the dimension of the representa-
tion, and we will require dim V' > 0.

Remarks:
1. A representation is an action of G on V' (in addition: linear).
2. We say that V' carries the representation I', and we call V' the carrier space (of T').

3. Unless otherwise stated we consider vector spaces over C (maybe sometimes over R,
probably never over other fields),
e.g. C"or L*(R%)?
equipped with a scalar product (:|-) : V xV — C, i.e. withV v,w € V and V o € C:
(i) (vjw) = (w[v)
(i) (v|aw) = alv|w)
(iii) (v|v) > 0 and =0 only for v =0

4. Choosing an orthonormal basis of V' (if finite-dimensional), i.e. {v; : j=1,...,A =
dim V'}, then each I'(g) corresponds to a A X A matrix with elements

L(g)jr = (vi|T'(g)vk)

and we call I' a matrix representation.
We say: The v; transform under G in the representation I'.
5. If V is a finite-dimensional vector space over C, then V = C4™V and dim V' = tr['(e).
Definition: (faithful representation)

We call a representation faithful if the homomorphism I' : G — GL(V) is injective, i.e.
different group elements are represented by different matrices.

91t’s best to think of the finite-dimensional case for the moment. In the infinite-dimensional case we’d
really want separable Hilbert spaces and bounded linear operators I'(g).
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Remarks:

1. Every group has the trivial representation, with I'(g) = 1 V g € G; in general not
faithful.

2. If the group G has a non-trivial normal subgroup H, then a representation of the
quotient group G/H also induces a representation of G. This representation is not
faithful. (cf. Problem 9)

Idea: ['(g) := T(gH) = (i) [(9)['(h) = T(gH)T(hH) = T(ghH) = T(gh),

(ii) I'(h) =1V he H.
Conversely: If a non-trivial rep I' is not faithful, then G has at least one non-trivial
normal subgroup H, such that I' induces a faithful representation of the quotient
group G/H. (in the above sense)

Definition: (unitary representation)
A representation I' : G — GL(V) is called unitary, if I'(g) is unitary V ¢ € G, i.e.
(Llg)v[P(g)w) = (wlw) ¥ v,w € V.

Remarks:

1. If V is finite-dimensional and if we choose an orthonormal basis, then such a repre-
sentation is in terms of unitary matrices.

2. Unitary representations are important for applications in physics, since it is in terms
of them that symmetries are implemented in quantum mechanics (or quantum field
theory).

3. For finite groups every (finite dimensional) rep is equivalent to a unitary rep, see
next section.

2.2 Equivalent Representations

Definition: (equivalent representations) 5
We say that two representations I' : G — GL(V) and I' : G — GL(W) are equivalent, if
there exists an invertible linear map S : V' — W such that

I'(g)=S"'T(9)S Vgegq.

Remarks:

1. If the linear map is even unitary, i.e. (writing U instead of S) U : V — W with
(Uop|U)w = (é]1)y then we say that the representations are unitarily equivalent.
For finite-dimensional representations we have V' = W = C4™V  and by choosing
orthonormal bases U becomes a unitary matrix.

2. For finite groups every representation is equivalent to a unitary representation. . .

Theorem 2. Let G be a finite group, I' : G — GL(V') a representations and (-|-) a scalar
product on V. Then I' is equivalent to a unitary representation.
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Proof:

(v, w) =Y (L(g)v[(g)w) (%)

geG

is also a scalar product since

(i) (v,w) = > T(g)o[I(g)w) = > (T(g)w|I'(g)v) = X (T(g)wll(g)v) = (v, w),

(i) (v.0w) = T (C(ghiDlg)ow) = a 3 (M)l (g)w) = a(v,w)
(i) (v,0) = 3 (Pg)olD(g)v) = (T(elDle)e) = (o) =0 =0 only,if v =0,

Let {v;} be an orthonormal basis (ONB) with respect to (:|-) and {w;} an ONB with
respect to (-,-). Then there exists an invertible map S : V — V with Sw; = v, (change of
basis). Hence

(v,w) = (Sv|Sw), (+)

since with v = ) a;w; and w = ), f;w; we see that
J J

(Sv[Sw) = (SZajwleijﬁkwk) = Zl;a_jﬁk (vilog) = (2 Oéjwjik:ﬁkwk) = (v,w).

=6j1=(w;,wg)

Now I with

is equivalent to I' and unitary, since

(D(g)v[[(g)w) = (ST(g)S"v|ST(9)S ™ w)
= S (T(g)T(g) S [T ()T (9)S  w) | dg=h

'ea
7€ I(g'9)
= g h)S~'w|T(h)S™ w) (rearrangement lemma)
heG

= (571w, S71w)

(%)

= (o)

g

Remark: Finiteness of G was necessary in order to be able to write deG. Later we will
see, that for some infinite groups (namely compact groups, like e.g. SO(n) or U(n)) we
can replace the sum by a suitable integral. The theorem then still holds for continuous
representations.
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2.3 Beispiele und Invariante Unterraume

— section skipped in WS 23/24 —

Wir fiihren einige wichtige Konzepte zusammen mit einigen Sprechweisen aus der physikalis-
chen Literatur anhand eines einfachen Beispiels ein.

e Betrachte wieder {I, P} = Z,
I'Ris&— &, P:RYsF— -7
sowie {O;,Op} =2 Zy (vgl. Beispiel 3b aus Abschnitt 1.3).1°
(O1f)(@) = f(Z), (Opf)(T) = f(=T).

Wiéhle eine Funktion f; ohne spezielle Symmetrieeigenschaften unter {O;, Op} und
definiere

f2(%) == (Opfi) (%) = f1(=7).
Weiter sei

S = span(f1, f2)

dim S = 2 (Das war mit “ohne spezielle Symmetrieeigenschaften” gemeint. )
e Man sagt S ist invariant unter {Or,Op}, d.h.
fesS = 0O;f,0pfeSs.

Klar, da

Opf =0p(lanfi+asfs) =a10pfi + Opfa =asfi+ar1fa €S.

Dies definiert eine 2-dimensionale Darstellung von Zs (oder irgendeiner zu Zs iso-
morphen Gruppe) auf S. In der Basis {f1, f2} gilt

ro) = (é (1)) ., TOPp) = <(1) é) .

e Definiere nun eine neue Basis,

fi=f+f, for=fi—fo, S=span(fi, f2).

= Opfi = fi (gerade), Opfo = —f, (ungerade).

1000;,0p} ist auch eine Darstellung von Z, auf einem geeigneten Funktionen-Raum — jetzt wollen wir
aber auf etwas anderes hinaus. . .
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Man sagt f; und f, haben feste Paritiit.
Darstellung von Z, auf S in der neuen Basis:

- 0). - 2)

I'® ist dquivalent zu I'®, sogar unitéir dquivalent, denn

1 /1 1
® _ 7tir® i E—
T UTYU mit U \/5(1 _1>

(Hier klar, denn gerade durch diesen Basiswechsel hatten wir I'® ja erhalten — in
anderen Féllen weifs man das aber vielleicht gerade nicht!)

e S hat jedoch noch kleinere invariante Unterrdume, es gilt namlich
S=85eS8,, (direkte Summe)
wobei die S; := span(f;) einzeln invariant unter {O;, Op} sind,

Op(afl) = Ozfl c 51
Op(afz) = —afs € S
Man sagt S ist reduzibel (bzgl. {Or,Op}).

S, und S, sind irreduzibel, d.h. sie konnen nicht in kleinere invariante Riume zerlegt
werden (hier weil sie 1-dimensional sind).

e Aufden invarianten Unterrdumen sind jeweils eindimensionale Darstellungen definiert:

1, rop) =1, auf S und
rormn=1, I9P) =-1, aufs,.

Jede Funktion mit gerader (ungerader) Paritét transformiert sich unter {O;, Op} in
der Darstellung I'® (T®).

e Wie S (5.0.) heift nun auch die Darstellung I'® reduzibel'* und man schreibt

®=—1r%¢ro®,

e Weiteres Beispiel: Betrachte

hy (%) := %+ y+z, ho(Z):=(0ph)(¥) = % — y—2z, &p:=span(hy,hs),

TYz

= ™ S, = span(gi, g2) -

—xyz

9 (%) =e ) 92(%) = (Opg1) (%

~"

Hyird spéter noch richtig definiert
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Das Tensor-Produkt S, ®S, wird durch die vier Produkte hy g1, hig2, hag1, hago aufges-
pannt und ist invariant unter {O;,Op}, denn f € §, ® S, =

Opf = Op(ah191 + bh192 + Chggl + thQg)
= dhig1 + chi1gs + bhagy + ahags € SRS,

Dies definiert eine 4-dimensionale Darstellung von Z, auf S, ® S,:

0 0 01
00 10
1 0 0 0

Invariante Unterrdume:
higy und hege = Op(hig1) spannen einen invarianten Unterraum S* auf,
analog S° := span(higs, hag;). Offensichtlich:

SRS, =808

jeweils mit einer Darstellung dquivalent zu IT'®. Reduziere S¥ und S? jeweils weiter
durch Einfiihren von Basisfunktionen gerader und ungerader Paritat. Fiir die Darstel-

lungen gilt dann
@=10gro=1%gr0%¢rogre

Man schreibt auch (Dimensionen)
22=19lelel

Sieht etwas lustig aus und ist hier natiirlich nicht besonders tiefsinnig — aber wenn
wir dhnliche Rechungen spéter z.B. fiir Darstellungen von SU(n) durchfiihren konnen,
haben wir einiges gelernt. . .

— end of skipped part —
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2.4 Irreducible Representations

This basis way of thinking about X ® Y s useful;
the abstract definition is useful in showing that
the construction is not basis dependent.

Barry Simon

Reminder: (direct sum & tensor product)
Let V and W be vector spaces, dimV = n, dimW = m, with bases {v,...,v,} and
{wy, ..., wy}, respectively. Then

(i) {v1,...,Vn, w1, ..., wy} is a basis for the direct sum V @& W
with dimV & W = dim V + dim W and

(i) {v; ® wi}j=1, nk=1,. m is a basis for the tensor product V @ W
with dimV @ W =dimV - dim W.
Remarks:

1. For linear maps A:V — V and B: W — W we define A @ B as the linear map

A®B : VoW VoW
(v,w) = (Av, Bw),

(0 5) () = (52)

2. Given two representations I' : G — GL(V') and r : G — GL(W) we can define the
representation ' & T : G — GL(Vae W), by (I' & T')(g) = '(g) @ I'(g). (direct sum
of representations)

in matrix notation

Product representations I' ® I will be defined similarly later.
In the following we ask ourselves whether a given representation is a direct sum of “smaller”
representations. . .

Definition: (invariant subspace)
Let I' : G — GL(V) be a representation and U C V' a subspace of V. U is called invariant
subspace (with respect to I'), if I'(g)v € U Vv € U and Vg € G.

Remark: Every carrier space has two trivial invariant subspaces, namely V' and {0}. All
other invariant subspace (if there are any) are called non-trivial.

Definition: (irreducible representation & complete reducibility)
We call a representation I' : G — GL(V)

(i) irreducible, if V' possesses no non-trivial invariant subspace. Then we also call V
irreducible with respect to I'.

(ii) reducible, if V' possesses a non-trivial invariant subspace U.
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(ili) completely reducible, if V' can be written as a direct sum of irreducible invariant
subspaces.

Abbreviation for “irreducible representation” irrep

Beispiele:
In Abschnitt 2.3 waren I'®, T'® und I'® reduzibel, 'O und I'® dagegen irreduzibel.

Theorem 3. Let I' : G — GL(V) be a unitary representation and U C V' an invariant
subspace. Then:

(i) Ut ={veV :(uv)=0 Y ueU} is also invariant,
(ii) the restrictions T'|y and T|y. define representations 't and T'?, and

(iii) T is equivalent to Tt @ I'%; we simply write T =T @ T2,

Corollary: (Maschke’s Theorem)
We can write every (finite-dimensional) unitary representation as a direct sum of irreducible
representations.

Combined with Theorem 2 this implies that for finite groups every (finite-dimensional)
representation is completely reducible.

We can find a basis of V such that in matrix notation
I'(g) 0

F2
I'(g) = ) T3(g) ,

0

where the T are irreducible (n; x n; blocks with n; = dimIV).

Here an irreducible representation can appear more than once, (relabel)

I‘:FI@...@Pi@FZ@...@Fi@...:@ajrj7
a7 times a, times J
i.e. in I" the irreducible representation IV is contained a; times.

Beispiele: In Abschnitt 2.3 lag die reduzible Darstellung I'® bereits in reduzierter Form
(d.h. blockdiagonal) vor, I'® und T'® kénnen durch einen Basiswechsel in diese Form
gebracht werden. In T® kamen die Irreps I'® und I'® je zweimal vor.

Proof: Essentially, we have to show (i), then (ii) and (iii) follow immediately.
(i) Let v € U+, w € U and g € G. Then we have

(L(g)vlu) = (v[T(g)Tu) = ([T (g)~"u) = (v[T (g™ )u) = 0.
i) T =Ty, uel=
()T (h)u =T (g)L'(h)u = I'(g)L'(h)u = T'(gh)u = I'*(gh)u
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2.4.1 Example: O4 operators for the group D3

e D3 = symmetry group of an equilateral triangle = S;

e group elements:

e = identity

C' = rotation by 120°, clockwise about the centre = (123)
C~! rotation by 120°, anti-clockwise about the centre = (132)
01, 09,03 = reflections across Ly, Lo, Ly = (23), (13), (12)

group table: see exercises

—

e Now consider invertible linear maps A : R? — R?, # +— AZ. (The 6 elements of Ds
are examples for maps of this kind.)

e For ecach map A define an operator O 4, acting on functions f : R? — C (or R) as
(0af)(@) = f(A™'7).
e The 6 operators O4, A € D3, form the group Ds, isomorphic to Ds, since
((0408) f)(@) = (04(0))(T) = (Opf)(A™'T) = f(BT'AT'T)
= f((AB)™'Z) = (Oanf)(T).

e We now let these operators act on some functions, thereby generating representations

of Dg = D3 = Sg.

First

¢1 (f) e e—|f—fl\2 — e—(x—x1)2—(y—y1)2 )
What is Oc¢1?
$2(7) := (Oc¢n)(7) = 1 (C7'7)
=exp(—|C7'% — 71 %)

= exp(—|C7H(7 - C7)[")
(

exp(—|% — C#1]?) (rotations conserve lengths)

= exp(—|7 — fg\z)
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Similarly:

For the reflections we have

(05,01)(Z) = ¢1(07 ' Z)

= exp(—|oy & — 71]7)
= exp(—|oy (T — 01d)[")
= exp(—|7 — o171 ?) (reflections conserve lengths)
= exp(— |7 — 71 %) (since 7' lies on the L;-axis)
= ¢u(7),
and also
(05,01)(Z) = d1(05'F) = exp(—|T — 0271|*) = exp(—|Z — T5[*)
= ¢3(Z)
(00361)(T) = ¢1(05'T) = exp(—|T — 0571]*) = exp(—|T — 7o)
= $2(7).
Similarly we find out how the Os act on ¢y and ¢3,
o1 P2 93
Oc |01 ¢2 ¢3
Oc | ¢2 ¢3 &1
Oc | b3 &1 @2
Oy | 01 &3 @2
O, | 03 G2 1
003 ¢2 ¢1 ¢3

i.e. S := span(¢, ¢z, ¢3) is invariant under D3, and the functions ¢1, ¢2, g3 transform
in a three-dimensional representation of the group D3 (= D3 = S3), namely

100 001 010
r'e)y=(o 10, r1W@W=(100], TYC)=[00 1],
001 010 100
100 001 010
Mo)=100 1], THox)=10 1 0f, THoz)=|[1 0 0
010 100 001

e [s this representation reducible?
Yes, since § is reducible, ie. there exists a change of basis decomposing S in smaller
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invariant subspaces :

¢~51=¢1+¢2+¢3
b2 = V3(¢2 — 3)
G3 = 201 — Gy — b3

(Later we will learn how to find this change of basis.)

° q~51 is invariant under D§ , since the operators O, just permute the terms of the sum,
and in particular span(¢y) is invariant and ¢, transforms in the trivial representation
F2(g) =1 \V/g S Dg.

e For ¢, and ¢35 we obtain

P2 ¢3
O P2 b3
Oc _%&2_\/;(%3 73~g—%~§
Oc | =502+ 505 —Fdr— 305
001 _¢2 ¢3
O, | 32— L0y Lo, — Lo,
Oy, %452 + \/7§<53 \/7:?(52 - 5&3

ie. span(ég, $3) is invariant, and ¢,, ¢ transform in the two-dimensional representa-

[(e) = (

tion,

(1)

(

10 3 _% \/75 3¢/
2

-1 0
0 1

). e

e Hence, q/~>1, qgg, gz~53 transform under D in the representation

ie. [ =T?@ I Moreover, we also write I'' = I'> @ I'?, since I'! is equivalent to I'%,

I(g)

(even unitarily equivalent)

IM(g) =UTY(9)U with U =

1 00

0 Vge Ds,
0 F3(g) g 3

V2 0 2
V2 V3 -1
V2 —V3 -1

Vg€ Ds.

\/6

I'* is already given in reduced form, I'* not.

e Remaining question: Is the two-dimensional representation I'"® reducible?
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2.5 Schur’s Lemmas and orthogonality of irreducible representa-
tions

Theorem 4. (Schur’s Lemma 1)

Let G be a group, I' : G — GL(V) a finite-dimensional, irreducible representation and
AV =V a linear map. If A commutes with ', i.e. AU'(g) = I'(9)A ¥ g € G, then
A =cl for some c € C.

Proof:
Let A be an eigenvalue of A, i.e. v eV, v#0 : (A— X)v =0, then

(A=MNDl(glv=T(9)(A=XNv=0 Vgedq,
and thus U :={v € V : (A— X)v = 0} is an invariant subspace. Since U # {0}, and since
I' is irreducible, it follows that U = V' and hence A = 1. Il

Corollary to Theorem 4
For an abelian group G, every unitary irreducible representation has dimension 1.
Proof: exercises.

Theorem 5. (Schur’s Lemma 2) .
Let G be a group, I' : G — GL(V) and I' : G — GL(W) two finite-dimensional, unitary
wrreducible representations and A :V — W a linear map. If

AT (g) =T(9)A Vgea,

then A=0 or T and T are unitarily equivalent.

Proof: Replacing g by ¢! and taking the Hermitian conjugate, we also have
I(g)At = AT(g) Vged.
This yields
ATAT (9) = ATT(g)A=T(9)ATA Vgeq,
With Theorem 4 it follows that ATA = ¢l (with c real), i.e. either ¢ = 0 and thus A = 0

or U = \%A is unitary with I'(g) = UT(¢)Ut Vg € G. O

Remark: If the representations are not unitary, but if ~G is finite, then according to
Theorem 2: 3 S and T, such that I'(G) = ST(G)S™! and I'(G) = TT(G)T~! are unitary.
For A" := TAS~! we have
AT(G) = TAS™'ST(G)S™' = TT(G)AS™ =TV (G) A’
ie. either A’ = 0 and thus A = 0 or 3 U unitary, such that
(@) =Ur(GU
& TT(G)T ' =UST(G)S U

& [(G)=T'UST(G)S™'U'T,

i.e. ' and I are equivalent.
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Theorem 6. Let G be a finite group and IV, j = 1,2, ..., non-equivalent unitary irreducible
representations with dim IV = d;. Then the matriz elements obey the orthogonality relation

& 2 @ T @ = 5

d_j5jk6uu’ O

Vopv=1,....dj andV p/,v =1,...,d.

Proof: Let V; be the carrier space of IV, and A : V; — Vj, linear (otherwise arbitrary).
Define

A: = |Zr’f g)Al (g)~! (%)

geG
For every h € G we have

= Zrk (9) ALY (g)~

geG

| Zrk hg) AT (g)~?

gGG

Z I*(g) AT (htg)) ™
@l | i
Z ¥ (gAY (¢) P T (A1)}
g 'eG
= ATV (h).
With Schur’s lemma (Theorem 5) we conclude that A = 0 if j # k, and else A = ¢1 with
1. - 1

= —trA=—trA
c a r i rA,
ie. 1
A= —trAdul. (+)
d;
Now choose A,p = dads, (i.e. only one element # 0) = tr A = §,,,. Finally:
~ 1
Ay = 5 d — 0y 00y
geG a,f

T*(g) (T9(g)71),,
|G|Z v (T9) Mo

geG
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Consequences of Theorem 6

e For fixed j, 1, v we collect the |G| numbers I'V(g),,, g € G, in a vector vU*) € CI¢I,
e For each representation I there are d? vectors of this kind (since p,v =1,...,d;).
e According to Theorem 6 vUM) | o*#'¥) if j £k or yu+# i or v # 1.

e There are at most |G| mutually orthogonal vectors in CI¢!

= > <G
J
In Section 2.7 we will show that actually

> & =G|
J

The sum is over all non-equivalent irreducible representations, i.e., in particular,
a finite group has only finitely many non-equivalent finite-dimensional irreducible
representations.

2.6 Characters

Definition: (character)
For a finite-dimensional representation I' : G — GL(V') we call x : G — C with

x(g) =trI'(g)

the character of the representation.
Remarks:

1. In terms of matrix elements we have

2. If T and T are equivalent then

X(g) = trI(g) = tr(ST(9)S™") = tr(S7'ST(g)) = tr I'(g) = x(9) -

3. All elements of a conjugacy class have the same character,

X(hgh™) = trT(hgh™) = tr (DT ()T (h™) = tr (D)D) (g))
= tr (D(h™'R)(g)) = trT(g) = x(9)-
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Corollary to Theorem 6. Let G be a finite group and IV, j = 1,2, ..., non-equivalent,
irreducible representations with dimI? = d;. Then the characters x? = trIV obey the
orthogonality relation

a1 2 X (@) x"(9) = b

1
Gl 2=

Proof: W.l.o.g. TV unitary (else similarity transform, cf. Theorem 2). In
1 ——— 1
= S W) 0 = T Onduas
0] 2 ]
choose v = p and v/ = 1/, and sum over p and . O
Remarks:

1. Since the characters depend only on the conjugacy class, we can rewrite the orthog-
onality relation as

1 —
@chXgXlgzéjko

Here c labels the classes and n. is the number of elements in class c.

2. Let m be the number of different conjugacy classes of G and p the number of non-
equivalent irreducible representations.

For fixed j we collect the m numbers x7 in a vector v/ € C™. The p vectors for
different j are again mutually orthogonal

= p<m.

We will see (exercises) that in fact p = m, i.e. the number of non-equivalent irre-
ducible representations is equal to the number of conjugacy classes.

The m x m matrix with entries xJ, j,¢ = 1,...,m, is called character table of the
group.

3. For a (in general reducible) representation

I'= @ a;I* 7 TY irreducible,
J

we have

X(g) = aid’(g).
j
This implies

é > Il = ,—é| ZajakZXj—@Xk(g) =) a.

geG geqG J

=|Gldix
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If I' is irreducible, then one a; = 1 and all others vanish, and thus
L > (gl =1
|G| '
geG
If I' is reducible, then at least one a; > 1 or several a; # 0, and thus
. > Ix(g)P >1
|G| '

geG

Hence, we have found an irreducibility criterion for a given representation.

. . . 2023-11-02
Example: Representations of D3 = S5 in Section 2.4.1

e conjugacy classes: {e}, {C,C}, {01, 09,03}

e For the two-dimensional representation I'* we have

224 (-1)*-240

(D @F + () 2+ [x(01)]* - 3) 6

! 1
@ |

i.e. I'3 is irreducible.

e We have thus found 2 irreducible representations of Ss:
The trivial representation, which from now on I want to denote as I'' (it was denoted
I'? in Section 2.4.1), with d; = 1 as well as I'® with d3 = 2. From

Z d? = |G| (We already know <, in Section 2.7 we will show =.)
J
we conclude that there has to be another irreducible representation with dimension
dy = 1 (and no others); it is given by

2(e) = T2(C) = T%(C) =1,
Fz(O'l) = F2<0'2) = F2(0'3) =-1

(sign of the corresponding representation).

e Thus the character table of D3 ~ S5 reads:

{e} {C.C} {01,905}

% ! 1
2l -1
2 2 -1 0

Remark: If we know the characters of all irreducible representations of a group, then
we can calculate for any given representation (in general reducible) how many times the

35



different irreducible representations appear in it:

X(Tg) = > C? XT(Q)

J
character of reducible rep unknown  known

= égéx’“—(mx(g) = |—Cl;|zj:aj g;xk—(mxj(g) = ay

J/

=|Gl6;k
_ v
or ak} - |G| nCXC XC
C

We call a; the multiplicity of IV in T.

Example: reducible three-dimensional representation I' of D3 & S5 (denoted I'! in Sec-
tion 2.4.1:

x(e)=3, x(C)=x(C)=0,  x(o1) = x(02) = x(03) =1,
a1:%[1-1-3+2 1043 -1-1=1,

1
a2:6[1.1.3+2 1-0+43-(=1)-1 =0, character table
N,

1
a3 =g[1-2:3+2-(=1)-0+3 -0 -1=1,

ie. I =Tt @I as already determined in Section 2.4.1 (different labelling of irreps).

2.7 The regular representation

Definition: (group algebra)
For a finite group G, |G| = n, we define its group algebra A(G) as the vector space spanned
by the group elements, i.e. we take (initially formal) linear combinations!?

AG) > r= ergj, r;eC,
j=1
with multiplication rule
(S00) (Lo ) =3 Srma
j=1 k=1 j=1 k=1

induced by group multiplication.

n n n
2with obvious addition Y rjg; + > q;9; = . (r; + ¢;)g;; multiplication by scalars similarly
j=1 Jj=1 Jj=1
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Remarks:
1. Due to gjgi € G the result is in A(G), i.e. the product is well-defined.

2. A matrix representation, say ', of G is also a representation of A(G), in the sense
that by defining I'(Y_; 7;9;) = >_;7;1'(g;) we have Vq,r € A(G)

I'(gr) =T(¢)I'(r)  and
I(g+7)=T(¢) +I(r),
where on the r.h.s. we have matrix multiplication and addition, respectively.

3. dim A(G) = |G| (as a vector space)

4. Group multiplication can be written as

9i9k = Z gm mk: ;

where (A}),,, encodes the group table: For j and k fixed, (A;),, = 1 for exactly one
value of m and vanishes for all others.

5. The n x n matrices A;, j =1,...,n, with elements
(A)mk m,k=1,...,n,

form a representation of GG, called the regular representation.
(A, is the representation matrix for g;.)

Proof: Let g4, g, 9. € G With gugp = 9. =

Galj = Zgagm (D) ng Yo (Ab)m;

9elj = Z gx (A
k

The Lh.s. are identical, and thus also the r.h.s. Compare coefficients:

(Acky = Y (A)om(Bo)ms = (Dalp)is

m

AV ANAN
0J

Theorem 7. (with the above definitions) The reqular representation of G contains all
irreducible representations of G, and the multiplicity of the irreducible representation T'* is
gwen by its dimension dy,

p .
B i p = number of non-equivalent
A= EB T < wrreducible representations) ’ (+)
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i.e. 35 reqular, such that
1
I(g5)

(g,
S8 = &2

'™ (g;)

" (g;)

o Vv
do blocks dy, blocks

Proof: The characters of the regular representation are

X(g5) =D (A )k

k

For the identity we have (obviously!)
€g; = i G (De)m; = (Ac)mj = Omj = xf(e) =n.
m=1
For gy # e gilt
9rg; = i Im(Dk)mj # 9 = (Ax)j; =0 = x*(gx) = 0.
m=1

With the formula from Section 2.6 we find
(ap: multiplicity of the k" irreducible representation)

1o 1
a = - ;x’“(gj) x*(95) = ~xF(e)n = di

Corollary to Theorem 7. We have

Zdi:n.

k

Here dy, is the dimension of the k™ irreducible representation and n = |G|.

Remark: In Section 2.5 we only showed <.
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Proof: In (x) choose g; = e,

Ae = @dk Fk(e) s
k

and take the trace,

" (e) :trAe:n:Zdi.
k

2.8 Product representations and Clebsch-Gordan coefficients
In physics applications one often considers vector spaces that are tensor products, where
each factor carries a representation of the same group.

Example: Coupling of angular momenta, e.g. orbital angular momentum and spin of an
electron, or spins of several particles — each factor carries a representation of SU(2).

Let U and V be vector spaces with bases {u;} and {v,}, respectively, and let W =U @ V
with basis {wy}, where w, = u; ® v; (cf. Section 2.4). Further let A : U — U and
B :V — V be linear maps. Then D := A ® B is the linear map W — W with

Dwy = Au; ® Bv;, where k= (i,7),
and extended by linearity to arbitrary w € W, i.e. for w = ), ajw;, we have

Dw = Z a;; Au; ® Buj .

i.j

In matrix components:

AUZ’Z E ui/AZ-/i, ij: E Uj’Bj’j and
,L'/ 5/

J

Dwk = Zwk"Dk/k’ = Z(ul/ X U])Al’z B]/] 9
k!

,Z:/j/
i.e. Dy, = Dyrjij = Ayi Byrj. 1t everything is finite-dimensional then

k ]

Scalar products on U and V induce a scalar product on W by
(welwe) = (uilur)u (vjlvy)v

again extended by (sesqui-)linearity.
If {u;} and {v;} are ONB with respect to (|)y and (| )y, then {wy} is also orthonormal,

(wg|wyr) = Oiir0jjr = O -
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Definition: (product representation)

For representations I'* : G — GL(U) and I'V : G — GL(V') we define the product repre-
sentation I'*®" : G — GL(U ® V') by

H%(g) =T*(g) @ T"(g) Yged.

Remarks:
1. @ is a representation since
T (gh)wy, = T*(gh)u; @ T (gh)v;
=T"(g)T"(h)u; @ I (g)I" (h)v;
= I (g) (T"(h)u; @ " (h)vy)
= DM (g (h) (u; @ vy)
——
—wy,

2. For the characters we have

X' (g) = tr D" (g) = tr (T*(g) @ T(g)) = tr T*(g) tr I (g) = x"(9)x"(9) -

3. Even for irreducible I'* and I'¥ the product representation is in general reducible,

r# ® I = @ (1)\1—0\ with Z a,\d,\ = dud,/ s
A A
where d) is the dimension of I'*. According to Section 2.6 the multiplicities are
1 N v
ax = @ Z”cX?X'SXc :

Example: (cf. Section 1.3)
Zy = {e, P}, two one-dimensional irreps, character table:

‘e P
YP=Tt1 1
Y2=T2]1 1

I(e) = ((1) ?) , I*(P) = ((1) (1]) :

Define " :=T3®I? = x%e)=2-2=4, x*(P)=0. Thus,
1
:5(4~1+O-1):2 and
1
az=5(4-140-(-1)) =2,
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ie. 3 @I =2I'"" @ 2I'? as one also easily finds explicitly, by diagonalising

I'(e) =1, and TI'*(P)=

4. In general we can decompose W = U ® V' into a direct sum of (under G) invariant
irreducible subspaces W2, with dim(W?) = dy. The index a = 1, ..., a, distinguishes
different subspaces carrying the same irreducible representation, i.e. 3 U, such that

]

UTlreer g = I

F)\

N 2N /

a1 blocks a) blocks

Thus U provides the change of basis from the {w;} to some new basis {w?},} in which
the representation matrices are block-diagonal. Here ¢/ = 1,. .. d\ numbers the absis
vectors of W

By choosing ONBs on both sides U becomes unitary.
Remark: In general U is highly non-unique.

The rest is essentially notation — somewhat nasty, but widely used, and sometimes
even useful.

With k = (7, j) and in so-called Dirac notation, one writes

|w2€> = Z |wij> \<i7j(/j’7 v)a, >‘7€>j ()

.. ~\~
v

Clebsch-Gordan coefficients

The Clebsch-Gordan coefficients are matrix elements of U, with

(,7): row index (old basis),
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(a, A, £): column index (new basis),
(u,v): fix. (Tells us which product is decomposed.)
The inverse of (x) is

|wij> = Z |w3£> <Oé, )\,E(,u, V)i>j> s

al

(this defines (o, \, €(, V)i, 7))
and with U unitary we have (o, A\, €(u, v)i,5) = (i, j(u, V), A, £)

The CG coefficients satisfy “orthonormality and completeness relations”

Z(i/a jl(,u’v V)av )‘7 é) <a7 )‘7 E(:U’v V)Z7.]> = 5i’i§j'j and
all

Z<O/7 )\/7 gl(ua V)i7 .]><Z7j(ﬂ’7 V)O(, )\7 £> = 5a’a6)\’)\6€’f )

ij
in matrix notation UTU = 1 = UUT.
simplified notation
— |i,7) == |w;) and |a, A\, £) := |w),)
— Einstein summation convention (sum over repeated indices)
= (6,5 V), A ) = (i, jle, A, £)
Then we can write

e (g))i, gy = |4, i) T*(9)wil" (9);;  and
I (g)| e, A, €) = |, A, )T (g) e

and conclude

<CY/, )\/, €’|F“®”(g)|a, )\, €> = (O/, )\,, €,|Oé, )\, f”>1—‘>\(g)g//g = 5a/a(sA/A5glg//FA(g)g//g

= 6a/a5)\/)\r)\(g)€’€
5 (@, N TH (g)]4, 7) (3, glev, X, €)

= <Oé/, )\/7 g/‘ilaj/>FM(g)i/iFV(g)j’j <i,j’6¥, )\7 €> .

(relation between elements of the representation matrices in the old and the new
basis)
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Example:
In quantum mechanics (the spin degree of freedom of) a spin—% particle is described by a
vector in C?. The basis vectors

transform in a two-dimensional representation of SU(2), namely I'*(g) = g V g € SU(2).
Consider two spin-1 particles: C? ® C? 22 C*, spanned by the product basis

=M, th=Mael), NH:=Hhelh, W=Lel,

transforms in ['*®*2. Define a new basis,

_ =D — _ M+ N oy
|070> T T? |17 1> T |TT>7 |1>O> T T? |17 1> T H@

In the exercises we show:

e |0,0) transforms in the spin-0 representation of SU(2) (one-dimensional — trivial
representation), and

e |1,m), m = —1,0,1, transform in the spin-1 representation (three-dimensional) of
SU(2).
Clebsch-Gordan coefficients:
R VY
o | 0 5 -5 0
M1 |1 0o 0
(Lo | o 5 5 0
(1,—-1] | © 0 0 1

ie eg (LO[T) = %

In general one labels the unitary irreducible representations of SU(2) by their so-called
spin quantum number s € %NU; the correspong representation has dimension 2s + 1.
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3 Applications in quantum mechanics

In the following we explore the consequences of the orthogonality relations for irreducible
representations (Theorem 6) for degeneracies of quatum mechanical energy levels.

3.1 Expansion in irreducible basis functions and selections rules
In quantum mechanics one considers vector spaces (Hilbert spaces) like V = L?(R%) @ C",

i.e. C"-valued square-integrable functions in d variables, e.g. d = 3 and n = 2s + 1 for a
particle with spin s, moving in three-dimensional space (Z € R3: position of the particle).

€ L? (R%) ® C™, scalar product
(Ylp) = mE 1 /Rd U (T) om(x) d?z

An operator A : V — V is called unitary, if it leaves scalar products invariant, i.e.

(AY|Ap) = (Yle) Y ,peV.

2023-11-09
Lemma 8. Let G be a (finite) group of linear, unitary operators, A € G, and let

VY, ... 0y be functions that transform in the unitary irreducible representation I'V (with

dim(I) =d, ), i.e.

du
AYL =Y 5T (A)sa (+)
B=1
Then AC, € C such that

WZWJZ) - Oz/ 51/# 50(,3 . (+)

Remark: We say that the ! have special symmetry properties with respect to G. If
v # p, then 9% and ¢, have different symmetry properties. The lemma states that
functions with different symmetry properties are orthogonal to each other.

13 Alternatively, view the operators A as unitary representation of a group G on V.
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Proof:

(WE |l = Z (Agy | Agh)

AEG
dy
¥ Z<ZW A 25T (A0
AEG y'=1

= Z D AT T () (0510%)

AeG

J/

g

:551,“57#6043 (Theorem 6)
1 14 174
d ,U,(Saﬁ d_ Z<¢7|¢7>
Yoy

=C,

Remarks:
1. By normalising the ¢2, (Y% |¢%) =1, we get C, = 1 V.
2. Now we can express an arbitrary function ¢) € V' as linear combination of functions
with special symmetry properties (= invariant basis functions) as follows:

(i) Consider the subspace spanned by the images of 1 under application of all

Aed
U =span({Ay : A € G}).

U is invariant under G, and ¢ € U.
(ii) Decompose U into irreducible invariant subspaces (which carry irreducible rep-
resentations of (), and expand v in bases of the invariant subspaces.
Which irreducible representations, and thus which basis functions, appear in this
expansion depends on ).

3. Equations like (+) are also called selection rules. (Later: A selection rule determines
which transitions cannot happen since the transition matrix element vanishes due to
symmetries. )

3.2 Invariance of the Hamiltonian and degeneracies
A special role is played by the Hamiltonian H : V' — V (a linear self-adjoint operator) of

a quantum mechanical system. In particular, its eigenvalues are the possible energy levels
in which we can find the system.
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Let H be the Hamiltonian of a quantum mechanical system and A a unitary operator.
If
AH =HA,

then we say A commutes with the Hamiltonian or A leaves H invariant.

The set of all symmetry operations (realised by unitary operators A;) which leave H
invariant (i.e. AjH = HA;), forms a group G, the symmetry group of H, since

AlH:HAl, AQH:HA2
= (AlAQ)H = AlAQH = AlHAQ = HA1A2 = H(AlAQ) .

Let A € G and [¢) an eigenstate of H with energy F
H[p) = Elp)
= H(A)) = AH|¢) = E(Al)) (%)
i.e. Aly) is also eigenstate of H with the same energy E.

If E is not degenerate then Al)) o |1).

If E is m-fold degenerate, then A1) is a linear combination of the states [11), ..., [tm)
with energy E. (The previous case was just the special case m = 1.)

In any case the space S = span(|i)y),...,|1y)) is invariant under the symmetry
group of H.
= The degenerate states [¢1),. .., |t,) transform in a representation of G,
Algg) =D T(A)sle), A€G. (-+)
k=1

In principle this representation can be reducible or irreducible; typically it is irre-
ducible: Consider now an invariant subspace U with Hy € U V¢ € U. Then:

(i) If U is irreducible then, according to Schur’s Lemma (Theorem 4), H restricted
to U is a multiple of the identity, i.e. all ¢ € U have the same energy.

(ii) If U carries a reducible rep I', say I' = I'* @ I'V, with different irreps I'* and I,
then Schur’s Lemma (Theorem 5) forces H restricted to U to be blockdiagonal,
and the diagonal blocks are once more multiples of the identity,

EJd 0
H|U:(S El,]l>’

but now in general F, # E,, i.c. at least symmetry doesn’t force them to be
the same.
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(iii) If states transforming in different irreducible representations still have the same
energy, we speak about “accidental degeneracy”. Possible reasons:

1. “fine-tuning” of one or several parameters in H (rather unlikely).

2. We haven’t correctly identified the full symmetry group, i.e. we have over-
looked some symmetry.

e Conclusions

— Degenerate states to a given energy typically transform in an irreducible repre-
sentation of the symmetry group of H. (i.e. they can be classified by irreducible
representations).

— number of degenerate states = dimension of the irreducible representations

Example: Hydrogen atom
First we neglect spin (i.e. in particular no spin-orbit coupling), Hilbert space L?(IR3),

h? e?

where r = |Z|, 7 € R3.

e Eigenstates are labelled by so-called quantum numbers

n=1,2,... (principal quantum number),
¢=0,...,n—1 (angular/orbital /azimuthal quantum number) and
m = —/{,...,¢ (magnetic quantum number),

U(Z) = Rne(r)Yem (0, ¢) -

e The Hamiltonian for any central force problem, (i.e. H as above, but with —e?/r
replaced by an arbitrary function of r) in 3 dimensions is invariant under O(3). States
for fixed n and ¢ transform in a (2¢+1)-dimensional irreducible representation of O(3)
(which we will classify later), i.e. the energy does not depend on m = (2¢ + 1)-fold
degeneracy.

e Observation (for hydrogen): The energy also doesn’t depend on ¢ (“accidental degen-
eracy”)

n—1
= n’-fold degeneracy, since Y (204 1) = n?.
=0

Explanation: The symmetry group is larger than assumed so far. The Hamiltonian of
the hydrogen atom is even invariant under O(4) (H commutes also with the Runge-
Lenz vector) = energy does not depend on ¢, and the n?-fold degeneracy can be
understood in terms of the dimensions of the irreducible representations of O(4).
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3.3 Perturbation theory and lifting of degeneracies

e typical problem:
H=Hy+ H',
with Hj “integrable” and H’ “small perturbation”

e Let G be the symmetry group of Hy. Two possibilities:
1. H’ is also invariant under G.

2. H’ is only invariant under a subgroup B C G.

e In case 1 the perturbation H' does not lead to a splitting of levels (it does not lift
the degeneracy of the spectrum of Hy).

e Case 2 leads to a splitting of levels (we — partially — lift degeneracies):
— The exact eigenstates of H transform in irreducible representations of B.
— The degenerate eigenstates of Hy transform in irreducible representations of G.

— For the latter representation, the matrices corresponding to the elements of B,
form a representation, say I', of B, in general reducible, i.e.

Ir=@ar’ with  dimIV)=d;.
j=1

— States transforming in an irreducible representation of B, are still degenerate.
States transforming in different irreducible representations of B, in general have
different energies, i.e. (some of the) so-far degenerate levels split:
= ;aj new energy levels

ay of these each d;-fold degenerate,
as of these each d»-fold degenerate, etc.

Examples:

1. Hydrogen atom as in Section 3.2
Adding a small radially symmetric potential V(r) (but not %) breaks the O(4)-
symmetry to O(3) and each energy level splits into n levels with different ¢.

5

=2
_ P —
n=3 /=0
S R |
n=2 - (=0
1
n=1 - 1
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Each new level is still (2¢ + 1)-fold degenerate, since H' is still invariant under O(3).

2. Fine structure of hydrogen
e Take electron spin into account: instead of L*(R?) now consider L?(R3) ® C2.

e Intermediate step: Consider the same Hamiltonian as before (more precisely
H — H ® 1,). States which so far transformed in the representation ['**!
of O(3), now transform!* in I'**! @ I'? but energies are unchanged, only the
degeneracy is doubled.

e Now add the perturbation H’, containing i.a. spin-dependent terms (spin-orbit
coupling), but still invariant under O(3). With

F2€+1 ® F2 _ FQE D F2€+2

we obtain states transforming in one of the two irreducible representations. One
calls j =0 &+ % the total angular momentum quantum number,

. 20+ 2
— 1 —
2j+1=2(0+1)+1 { o
Example: n =2, /=0, 1:
1—\1®1—\2 EB F3®F2 _ 1—\2@1—12 @1—\4
—— —— ——

s-Orbital, /=0  p-Orbital, /=1 still accidentally degenerate,
symmetry group still
larger than O(3)

fine structure
(i.a. spin-orbit coupling)

147m rather sketchy here. Before, we spoke about irreps of SU(2) when discussing spin. Here we first
spoke about an O(3)-symmetry. Later we will see that there is an intimate relation between SU(2) and
SO(3) (and their irreps) — let’s just say by slightly adjusting the perspective it’s legitimate to think of
I'2+1 and I'? as irreps of the same group.
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4 Expansion into irreducible basis vectors

4.1 Projection operators onto irreducible bases

We take up Remark 2 after Lemma 8: Let U be a representation (e.g. by unitary operators)
on V and let €7, ..., e} €V be functions/vectors that transform in the unitary irreducible
representation I'V (with dim(I'¥) = d,). According to Remark 2 after Lemma 8 we can
expand every ¥ € V into such basis vectors, i.e.

dy
b= el
ro p=1

with expansion coefficients cg € C. We thus have
DR WELITN
and with Theorem 6 it follows that

ZF oo Ul = 3D el % Y T () TH(9)ap = el

gGG ©nooa,p geG

S/

~
=6, Ot O3

Fix p/ and (', and consecutively apply

I
|G|ZF /5/ ) a—l,...,dw,

geG

to 1: Either the result is always zero (if cg: = 0) or we obtain d,, basis vectors, which
transform in ' (if ¢, # 0).
This motivates the following definition:

Definition: (generalised projection operators)
Let G' be a group, U a representation, I'* an irreducible representation, dimI'* = d,. We
call

P~ S0 Vo

geG

generalised projection operator.

Remark: In the following I" will always be unitary, i.e.
[T (g) ™ n = [F“(Q)T]jk =T'"(g)k; (cf. above).
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Theorem 9. (Properties of Pj;) With above definitions we have:

(i) For fixed v € V and for fized 1 and j the d,, vectors Pﬁgw, k=1,...,d,, either all
vanish or they transform in the irreducible representation I'*.

In short: U(g Pﬁc:ZP“F“ 9) k-

(ii) szpﬁc = 5uV5J'kP€i'
(iii) Pj':= P}, is a projection operator.

(iv) Pr:=>, P is a projection operator onto the invariant subspace U" containing
all vectors transforming in the irreducible representation T'*.
(UF =@ Uk, Uk: irreducible invariant subspaces,
— Y a7 914 Yy
a=1,...,a,, a,: multiplicity of T* in U)

(v) >, Pr=1 if V' completely reducible. (here always assumed)
(vi) U(g) = Z ZF“(g)ijﬁ. (inversion of definition)

wo gk

Proof:

(i) see above

2023-11-16
(ii) First: action of generalised projection operators on irreducible basis,

Pl = i ST, Z 2T (9t

QGG gGG
- (%)

—6;UJ67,Z6]I€

= 5#’/6jk 6? .
For ¢ € V arbitrary, we have due to (i): the vectors ¢ := Pj1 transform in I'”
= PiPp = k = 5#1/5316 05 = 0Ok 05 = O Piinh -
(iii) PPy = P} Py, n SOk Py = 0,u05x P}

(iv)
PHPY = ZP“Pk = Z(Swfsjkp = 6WZP“

(v) First: action on irreducible basis,
IO ILTE W EE
W g 7|
write ¢ € V' as linear combination of irreducible basis vectors = > P* =1.
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(vi) For ¢ € V arbitrary we have due to (i): The vectors ¢} := Pj;z transform in I'*
= ) Y TMgyPhv=>_ Z (ks ¢l = Z Z Ulg) ¢
Ho gk HoJ j
Z 2P U Y

Examples:

1. Reduction of § = span(¢y, ¢o, ¢3) from Section 2.4.1 (invariant under D3 = S3)
e S3 has two 1-dimensional and one 2-dimensional irreducible representation (I'', T2, T'3).

e The generalised projection operators are

1
P].ll - (Oe + OC + Oé + 00'1 + OO’Q + 00-3) )

6
Py - é(08+oc+oc—om ~0,,-0,),

P3 = ; (o - —0C - %OC O, + %0@ + %o@,) :
Pp = % <—§Oc + \/7300 - ?O@ + ?Om) :
Py = % (?oa — \/7300 - ?o@ + ?Om) and
Py, = % (Oe —~ %OC - %o@ 10, - %o@ - %oas) .

e Applied to a vector in S, e.g. ¢; (see Section 2.4.1 for the action of the O4-
operators on ¢ ):

—p=1:

(1 + P2 + ¢3)

W =

P111¢1Z%(¢1+¢2+¢3+¢1+¢3+¢2)=

invariant under D5 and transforms in the trivial representation I'!.

—pu=2:

(1 + 2+ P35 — 1 — Pp3 — ) =0

| =

P121¢1 -

had to be zero, since I'? is not contained in the 3-dimensional representation
acting on S.
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— p=3:first j =1,

1 1 1 1 1
P131¢1_§(¢1—§¢2—§¢3—¢1+§¢3+§¢2> =0,
V3

Po, = 5 (=2 + ¢35 — 3+ ¢p2) = 0 (if one vanishes, then also the other one)
now j = 2,
V3
Py :F(¢2—¢3—¢3+¢2)0<¢2—¢3,

P232¢1:%(¢1—%¢2—%¢3+¢1—%¢3—%¢2> X 201 — ¢ — 3.

The last two functions transform in I'3,
This is the change of basis from Section 2.4.1.

2. Reducing a product representation

e Let I'*®” be a product representation of G on V,®V,,, in general I*®” = @ a,['*.
How do we find the irreducible invariant subspaces of V,, ® V,,7 A

e Start with a product basis |k, ) = |e})®|e}) and apply the generalised projection
operators Pj.

e For fixed A, 7, k, £ the d, vectors
Pik 0y, i=1,....dy,

either all vanish or they span an irreducible invariant subspace.
e By varying A, j, k, ¢ we can find all irreducible invariant subspaces.
e Exercises: Reduction of I®3 where I'® : S5 — GL(C?).
Summary:
e Decompose the space V' into irreducible invariant subspaces,

V-

[INe"

where p labels inequivalent irreps and o numbers copies of irrep pu.

e For the basis |, i,7), i =1,...,d,, of V we have

Plla,v, k) = |a, p, k)
Pflo, v, k) = |a, i1, 1)0,,04 and
Pz’j‘|a v, k) = |a, 4, 30,0, -
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4.2 Irreducible operators and the Wigner-Eckart Theorem

Definition: (irreducible operators)
Let G be a group, U a representation and ['* a unitary irreducible representation, dim I'* =
d,. A set of linear operators, {O :i=1,... ,du}, which transform under G as follows,

U(g)0"U(g Z O'T"(g)ji,

is called a set of irreducible operators corresponding to the representation I'*. (The O! are
also called irreducible tensors or irreducible tensor operators).

Remarks:

1. The definition makes sense, since

U(gh)O{U(gh)™" = U(g)U(M)O;U(h)"'U(g)™ = U(g) Z OfT"(h);:U(g)~"

J
=Y OLT*(g)i; T (h);: = Y OkT*(gh):
7.k k

2. Special case: If T'* is the trivial representation then the operator O* (no index i,
since d, = 1) commutes with U(g) V¢ € G, cf. Section 3.2.

3. If O}, i=1,...,d,, are irreducible operators and |e}), j = 1,...,d,, irreducible basis
vectors, then the vectors Oj'|e¥) transform in the product representation I'*®":

U(9)O}'les) = U(g)0fU(9) " Ulg)ley)
= Z O le)T" ()il (g)e; -
ot

We can reduce this product representation (cf. Section 2.8) and expand the vectors
O¥le¥) in the irreducible basis {|w),)},

Ofey) = " [wpe)(a, A, L, v)i, 5) ()
a\l

This leads to the. ..

Theorem 10. (Wigner-Eckart)
Let Of be irreducible operators and |e¥) irreducible vectors, then

(€10 ery = “la, A, L, v)i, §) (AO*|[)a

67

with the so-called reduced matriz element (which isn’t a matriz element. . . )

o Zekrwak

o4
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Proof:
(e70%eY) 5 > (ews,,) (o pym(p, v)i, 5)

a,p,m

In the proof of Lemma 8 (Section 3.1) we showed that
1
(t10t) = S - S

and thus

|Oﬂ|e Z Z ek|wak «, A E(Ma )Z j)

—<AHO“HV>a
O
Remarks:

1. The reduced matrix element does not depend on i, j or £. It seems to also not depend
on the operators O, and the reps p and v, but the w?, depend on O, u and v, since

Span({“"ék }) = span({O¥ (3"77 b

2. Important in applications, since many matrix elements (ME) on the Lh.s. are deter-
mined by few reduced MEs on the r.h.s. The latter contain the complete information
about the physics. Everything else (CG coefficients) is representation theory, i.e. is
already fixed by the symmetries of the problem.

3. In order to determine the reduced MEs calculate as many (suitable) MEs (Lh.s) as
there are reduced MEs. Then the Wigner-Eckart Theorem provides us with a system
of linear equations for the reduced MEs.

Example: Time-dependent perturbation theory

e Consider an Atom in the state ¢ with energy E, under the influence of the (time-
dependent) perturbation O (e.g. electromagnetic wave). The probability for a tran-
sition to state ¢ (with energy E,) is proportional to

{elO)[*.

Thereby, radiation with frequency |Ey,—E,|/h is absorbed or emitted. In experiments
one observes the intensity of this radiation, which is proportional to |[{p|O[)]?.

e The unperturbed system is rotationally invariant: 1 and ¢ are elements of bases
transforming in irreducible representations of SO(3): I'2¢1 T'2¢+1,

e The perturbation is also rotationally invariant: O is element of a set of irreducible
operators, transforms, e.g., in I'* (angular momentum 1, dipole radiation).

e Hence, consider (¢/,m’|O3 ,|¢,m) (further quantum numbers suppressed),
m=—l,. .. fom =—L,. . 0 m = —1,0,1.
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e Later we will see: [¥®RH1) — P21 gy D241 @y 243 ¢
— transitions only possible if / — ¢ = —1,0,1 ~~ selection rule,
— no a-sum, only one reduced ME,

m/’!

W, m!|O3 [, m) = (€', m/(3,20 + 1)m”,m) ({'|O®||£) .

For fixed ¢, ¢’ the relative intensities of the (24 1)(2¢'+1) theoretically possible
transitions are already fixed by the CG coefficients — some vanish ~» selection
rule.

(Problem slightly simplified here, cf. Wu-Ki Tung, Group Theory and Physics, World Sci-
entific, 1985, Sections 4.3, 8.7 & 11.4.)

4.3 Left ideals and idempotents

The generalised projection operators allow us to decompose reducible reps into sums of
irreps. To this end we already have to know the irreps. Remaining question: How to
construct the irreps?

Reduce the regular representation (see Section 2.7), as it contains all irreducible represen-
tations I'* (with multiplicities d,, = dim(I'*)).

Recall:

e Carrier space is the group algebra (or Frobenius-Algebra)
A(G) = span(g1, ..., 9n), n = |G| (group elements numbered again).

o A(G)>r =734, analogously q € A(G):
rg =Y _rigigigi = > i ge(Di)g; -
irj irj,k
Definition: (left ideal)
A subspace L C A(G) that is invariant under left multiplication is called left ideal, i.e.
reLandqge A(G) = qrel.

A left ideal L is called minimal if it does not contain any non-trivial left ideal K C L.
Remarks:
1. Similarly one defines right ideals and two-sided ideals. (Here we only use left ideals.)
2. L is a left ideal < L is an invariant subspace, since
“=" 0.k., since G C A(G)

“«" with r € L and ¢ =}, ¢;9; € A(G) we have

CITZZ%
J

g;r €L (linear combination of elements € L).
~
€L (inv. subspace)
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3. Similarly: L is minimal left ideal < L irreducible invariant subspace

Idea: Find the minimal left ideals and construct the irreps which they carry (by applying
the group elements to bases for the left ideals).

In the following we denote by PY the projection operator onto the minimal left ideal L%,
i.e. PYA(G) = LE. (As before p labels the non-equivalent irreps, and a =1,...,d,.)

Properties of P*:
(i) Phre LEV r e A(G)
(i) if ¢ € L¥ then Plq=gq
(ili) PLPY = 6.,0.5F)
and it follows that
(iv) Plq=qPyV q€ A(G)
Proof: Decompose r € A(G) as r = %Tg with rg € Lj. Then

qPlr = qP¥ Z Th = qri and

$ﬁ
Plqr="Plqy rh=PiYy gy =qrh. O
B8 v Y

)

EL%

Now define L* := @ L* and first construct the projection operator P* onto L*:
e
For each ¢ € A(G) exists a unique decomposition
q= un with ¢, € LV,
o

in particular for the identity,
e:ZeH, e, € L".
o

Thus,

qeu )
~—~
€LW (since e, € L)

g=qe=q) e =)
© 7

i.e. g, = qe,, and we have found:

Lemma 11.
Pt is given by right multiplication with e,, i.e. P*q = qe, V q € A(G).

Remarks:

1. P* is linear.
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2. From

eu == 6#6 = 6# E €y = E €M€V
v v
eLr cLv

it follows that e, e, = d,,e, — cf. property (iii).

3. With e = > e# this also works for projections to minimal left ideals, defined by
[7xe’

Plq = qel .
Definition: (idempotents)

An element ¢, € A(G) that satisfies e’ = e, is called (an) idempotent. If e = e, for
some non-zero §, € C then we call e, essentially idempotent.

Remarks:
1. We say the idempotent e, generates the left ideal L#, i.e.
L' ={qe, : ¢ € AG)}.

2. An idempotent is called primitive, if it generates a minimal left ideal. Otherwise it
can be written as a sum e; 4+ ey of two non-zero idempotents with ejeq = 0 = egey.

Theorem 12.
The idempotent e, is primitive. < For every g € A(G) 3N, € C s.t. e qe, = Agey.

Proof:
“=" Let L be the left ideal generated by e,,.
For g € A(G) define the linear map Q : A(G) — A(G) by

Qr =reyqe, forre A(G).

Then Qsr = sre,qe, = sQr Vs, r € A(G), and in particular Vr € L and Vs € G, i.e.
() commutes with the representation of G carried by L.

If e, is primitive, then L is minimal and according to Schur’s Lemma (Theorem 4)
(@ is a multiple of the identity on L. The latter is given by right multiplication with
ey, 1.e. 3N € C: eyge, = ey

“«<" Let e, = e; + ey with non-zero idempotents e;es = 0 = eze;. Then on the one hand
epere, = (e1 + ex)er(er + e3) = ey,
and on the other hand 3\ € C s.t.
eueiey = Ae, .

Thus,
)\eﬂzel:efz)\2ei:/\26u & M=),

but)\:Okel%Oand)\:1:>eM:elz>62:O‘,7627&0.
O
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Theorem 13.
The left ideals generated by two primitive idempotents, ey and e, carry equivalent irre-
ducible representations TV and T? iff eyqes # 0 for at least one q € A(G).

Proof:
“e Let ejqges = s # 0 for one ¢ € A(G).
Define the linear map S : A(G) — A(G) by Sr =rs.
Apparently, S : L' — L% and since Se; = s # 0 we have S| # 0.
It follows that Srp = rps = rSp Vr,p € A(G), and in particular Vr € G and Vp € L',
ie. ST'(r) = I'*(r)S. Hence, according to Schur’s Lemma (Theorem 5) I'! and T
are equivalent.
“=7 If I' and I'? are equivalent, then there exists a non-trivial linear map S : L' — L2
with STY(r) =T?(r)S Vr € G, i.e. Srp=7rSp Vr € G and Vp € L;
by linearity this is also true Vr € A(G).
Define s := Se; € L? = s = ses.
Then s = Se; = Seje; = e1Se; = e1s = e18€s.
O
Remark:
The primitive idempotent
1 (€]
€1 =75 9i
2
generates the one-dimensional left ideal L', which carries the trivial representation.
Proof: L' = {re; : r € A(G)}. With
1 1
re; = <Z7’j9j> (EZgJ = Z%@Z%
j i j i
1
= Z rj@ Z Gk (rearrangement lemma)
j k
= , here ¢ = iy
cep where ¢ Zj T
we find L' = span(e;), dim L' = 1, and thus minimal. Moreover,
c c
g-ceé1 =15 99i = — gr = C€1
RN
i.e. L' carries the trivial representation. O
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Summary:

e The group algebra A(G) can be decomposed into left ideals L* (u labels the non-
equivalent irreps of the group).

e The L* are generated by right multiplication with idempotents e,, where
ety = O, and Z e, =e.
o
e Fach L can be decomposed into d, minimal left ideals LX, o = 1,...,n,.

e The L! are generated by right multiplication with primitive idempotents e~.

e Having found all primitive idempotents, one can straightforwardly construct all irreps
of the group.

e Exercises: Reduction of the regular rep of Cj.

e In Section 5 we will use this method in order to construct all irreps of .S,,.

4.3.1 Dimensions and characters of the irreducible representations

Theorem 14. Let G be a group with group algebra A(G), and let
=D 099 (ay € C. )
geG

be a primitive idempotent with corresponding left ideal L* = A(G)e,, carrying the irre-
ducible representation I'*, dimI'* = d,. ThenVh € G

v =urin =Sy

gec

where ¢ is the conjugacy class of h with n. elements.

Remark: d, = x*(e) = |G|a..

Proof:
Define the linear map
Ap AG) 31+ hlre,,.

(i) The trace of Ay is the character of h™1:
Choose a basis {ry,...,rq} of A(G)s.t. {r1,...,rq,} is a basis of L*. Then

Apry = h7'rje,
contains no terms proportional to r, with & > d,,, i.e. now j <d,,,

dy
Ah'rj = h_lrjeu = h_lrj = ZTkF“(h_l)kj
k=1
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and thus

tr Ay = x"(h™") = x(h)
(w.l.o.g. choose T'* unitary, all others equivalent).
(ii) Now choose the group elements g € G as basis for A(G). Then

Apg = h_lgeu = Z ag

h—lgg/
N——
g'eG M

=g & ¢g'=g71lhg

= a4-1p4 g + terms not proportional to g,

and thus

G
tr Ap = Z%‘lhg = Zag’ng’| = ln_| Zag’ ;

geG g'ec ¢ gec

where G is the stabiliser of ¢’, and according the orbit-stabiliser theorem (see Prob-
lem 7) we have n. - |Gy| = |G].

Combining (i) and (ii) proves the theorem. g
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5 Representations of the symmetric group
and Young diagrams

The representation theory of S, is fundamental in several ways:

e Finite groups of order n are isomorphic to subgroups of S,, (Theorem 1).

e Primitive idempotents in A(S,) also play a role in the construction of irreps of
classical Lie groups, as U(m), O(m) or SU(m).

e When considering quantum systems of identical particles 5, is always a “factor” of
the symmetry group of the Hamiltonian H, i.e. the eigenstates of H transform in
irreps of S,,.

5.1 One-dimensional irreducible representations
and associate representations of S,

The alternating group A, is the group of even permutations of {1,2,...,n} (i.e. each
element is the product of an even number of transpositions). A, is a normal subgroup of
Sy, with quotient group S,,/A, = Z,.

= 5, has two one-dimensional representations, induced by the by the representations of
Zsy (cf. Problems 10 & 16):
I*(p)=1 VpeS, (trivial representation) and
ar o 1 for p even
*(p) = sgn(p) = { —1 for p odd

sgn(p) is called sign or parity of the permutation p.
Later: There are no other one-dimensional representations of S, (see Section 5.5).
Alternatively, we obtain I and I'* from. . .
Lemma 15. The symmetriser s = >, p and the anti-symmetriser a = Y, sgn(p)p are

PESn PESh
essentially idempotent and primitive.

Proof: For s see remark after Theorem 13.

a® = sen(p)psgn(q)g =Y Y _sen(pg)pg = nla,

p,q p q

=a (rearrangement lemma)

i.e. a is also essentially idempotent.

62



Representations: For all g € S,, we have
qgps =s=ps and
gpa =) sgn(r)gpr = sgn(gp) > _sgn(gpr)gpr = sgn(q) sen(p)a = sgn(g)pa.

(. J/
g

=a

= Both representations are one-dimensional, with matrix elements 1 and sgn(q), respec-
tively.
Remark: Non-equivalence can also be shown as follows: For all p € S,, we have

5pa = 86 = Z sgn(r)qr = Z sgn(q)z sgn(qr)qr = a Z sgn(q) =0.

rearrangement lemma: sp = s = a (rearrangement lemma)

= s and a generate non-equivalent irreducible representations of S, with basis vectors
{ps} and {pa} (p € S,,), respectively.
Definition: (associate representations)

For a representation I'* of S, with dimension dy, we call I'* and IA’X = I'* ® I'* associate
representations.

Remarks:
1. dim(T*) = dy

2. T is irreducible < I'* is irreducible, since

DAp) =sen(®p) = Y @)=Y o)

(= n! if irreducible).

3. If x*(p) = 0 for all odd p, then T is equivalent to T'* (since then all characters
are identical, cf. Section 2.6), and I' is called self-associate. Otherwise they are
non-equivalent.

4. T® and I'* are associate to each other.

The following theorem is relevant for systems of bosons or fermions.

Theorem 16. Let I'* and T'* be irreducible representations of S,. Then

(i) T* ® " contains T exactly once (not at all),
if T and T* are equivalent (non-equivalent).

(ii) I* @ T* contains T'* exactly once (not at all),
if TA and T are associate (not associate).
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Proof:
First: Consider only unitary representations of .S,
(all others are equivalent to unitary reps, cf. Theorem 2)
= Characters of irreducible representations are real, since
p~! is in the same conjugacy class as p = x(p) = x(p™') = m

rep is unitary

(i) Let ag be the multiplicity of ' in TA®#,

1 - 1 1 if I'* and I'* are equivalent
= n! Zﬁ@ XA@AL(M Tl Zw X'(p) = {O otherwise
Poo=1 L Y
=x*(p)

(ii) Let a, be the multiplicity of I'* in TA®#,

a, = % > @ X (p) = %Z sgn(p)x*(p) X" (p)

@) =)= (7)

_Jr it A and T* equivalent, i.e. if I'* and I'* associate
0 otherwise '

5.2 Young diagrams and Young tableaux

Definition: (partition, Young diagram)

A partition A = (Ay, Ay, ..., A) of a natural number n is a (finite) sequence of positive

integers with

D Ai=n and X >\
i=1
Let A and p be two partitions for the same n.
(i) We say that A and p are equal, if \; = p; Vi.
(ii) We say A > p if the first non-vanishing term of the sequence \; — p; is positive.
Graphically a partition can be represented as a Young diagram:

e n boxes, arranged in r rows, left-aligned,
e where the ith row consists of A\; boxes.
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Examples:

1. For n = 3 there are 3 different partitions:

(3) (2,1) (1,1,1)

11 |

2. For n = 4 there are 5 different partitions:

(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

(T11] L

Remark: Each partition corresponds to a conjugacy class of S,, and vice versa:
e A conjugacy class is characterised by its cycle structure (see Problem 27).
e We read the ith row of the diagram as a \;-cycle.
e Each of the numbers 1,2,...,n appears in exactly one cycle = > . \; =n.

= In particular, the number of Young diagrams for n is equal to the number of conjugacy
classes of S,,, and thus equal to the number of non-equivalent irreducible representations

of S,.
Example: For S5 we have
{e}: 3 1l-cycles, ie (1,1,1)
{(12),(13),(23)} : 1 2-cycle, 1 1-cycle, ie. (2,1)
{(123),(132)} : 1 3-cycle, i.e. (3)

Further definitions:

e A Young tableau is a Young diagram, where each of the numbers 1,...,n has been
written into one of the boxes.

Examples:

3[4]1] 214
9 I3

e In a normal Young tableau the numbers appear in increasing order, beginning in the
first row from left to right, continuing in the second row etc.

Examples:

12[3] . 1]2

4 314

For each Young diagram there is exactly one normal Young tableau.
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e In a standard Young tableau the numbers increase in every row and every column
(but not necessarily in strict order).

Examples:

1[2]4] 13
3 24

e The normal Young tableau corresponding to the partition A we denote by O,.

e We obtain an arbitrary tableau from ©, by a permutation p of the n numbers in the

boxes:
This implies ¢Of = 0.
Example:
23 |13
O =7

Remark: The naming conventions in the literature vary, e.g. Young diagramm, Young
graph, Young tableau, or Young frame.

5.3 Young operators

We will see that with each Young tableau we can associate a primitive idempotent gener-
ating a minimal left ideal in A(S,,) und thus an irrep of .S,,.

Definitions: Let ©f be a Young tableau.

A horizontal permutation h% permutes only numbers within rows of ©4.
A wvertical permutation v§ permutes only numbers within columns of ©%.
Furthermore, we define

the (row-)symmetriser sh = Z RX
{n5}
the (column-)anti-symmetriser ay = Z sgn(vy) v} and
]
the Young operator P PP Z Z sen(t?) b2 o?
(or irreducible symmetriser) A TATA & AN
{h5} {05}

(Some books define e = as instead of e = sa. This is only a matter of convention but leads
to different intermediate results!)

Example: standard tableaux for Sj
e O : =0 = : all p are horizontal: s; = 37 p = s (symmetriser for Sy)

only e is vertical: a; = e
e =se=s
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e Oy:=0() = 1]2] : e and (12) are horizontal: sy = e + (12)
= e und (13) are vertical: ay = e — (13)
€9 = S99 = € + (].2) - (13) - (132)

: only e is horizontal: s3 =e¢
all p are vertical: a3 = >~ sgn(p)p = a (anti-symmetriser for S3)
e3 =ea=a

o @g23) — 13 | : e and (13) are horizontal: 5(2 J—e+ (13)
e and (12) are vertical: ag 5 =e— (12)
D = 0 (12) 4 (13) - (129

2023-11-
In birdtracks: (cf. Section 1.4 and Problem 28) 0251150

Recall (see Problem 28) that open and solid bars over ¢ lines come with a normalisation
factor of 1/¢!.
Observations:

Most of the general features (for S,, with n arbitrary) are already present in this example.
(In the following we suppress the upper index p whenever that is unambiguous.)

1. For each tableau O, the horizontal and the vertical permutations, {h,} and {v,},
form subgroups of S, with {hy} N {v\} = {e}.
We obtain the subgroups for ©F from those for ©, by conjugation with p (which
has the same effect as permuting the the numbers in the tableau); consequently
ek = pexp~!. (In the birdtrack diagrams above we see this by intertwining the last
two lines of ey on the left and on the right.)

2. sy and ay are (total) symmetriser and anti-symmetriser of the corresponding sub-
group, in the sense that

syhy = hysy = sy and ayvy = vyay = sgn(vy)ay .

3. sy and a) are essentially idempotent, but in general not primitive.
The e, are essentially idempotent and primitive (Exercises).

4. e; = s and e3 = a generate the two one-dimensional irreps of S5 (cf. Section 5.1).
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ey generates a two-dimensional left ideal Ly of A(S3) (by right multiplication),

(12)ey = (12) + e — (132) — (13) = €3,

(23)es = (23) + (132) — (123) — (12) =: rq,

(13)es = (13) + (123) — e — (23) = —eg — 13,
(123)eg = (123) + (13) — (23) —e = —ey — 1,
(132)es = (132) + (23) — (12) — (123) = 1»,

i.e. Ly = span(eg,rs). Since ey is primitive, Lo is minimal.
= The Young operators of the normal Young tableaux generate all irreducible rep-
resentations of Ss.

D. e§23) also generates an irreducible representation. It has to be equivalent to the irrep

generated by es, since there are no more two-dimensional irreps of Ss.
The left ideal generated by 6523) is Lézg) = Span(eg%), réQg)) with

r = (123) — (13) + (23) — (132).
It is linearly independent from the other left ideals L; = span(e;), L3 = span(es),
and Ls.

6. A(S3) is the direct sum of these four minial left ideals.
The identity can be decomposed as

1 23
€:6€1+§62+§€g )+663,

i.e., the regular representation of S3 is completely reduced by the Young operators
corresponding to the standard Young tableaux.

5.4 Irreducible representations of S,

Most observations about the Young operators for S3 made in Section 5.3 carry over to S,
for arbitrary n. (The exception is Observation 6, which is only true for n < 4; it can be
reestablished for n > 5 by modifying the Young opelatom)

Theorem 17. Let \ # p be a partition of n € N.

(i) The Young operators €} are essentially idempotent, i.e. (€})? = nxek with ny # 0 and
(i

) the n%e’)’\ are primitive idempotents.
(iii) The irreducible representations generated by ey and e, are not equivalent.
)

The irreducible representations generated by ey and €\ are equivalent.

(iv
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Remark: The Young operators e, of the normal Young tableaux thus generate all non-
equivalent irreps of S,. ...since there are as many irreps as there are conjugacy classes
and the conjugacy classes are labelled by partitions or Young diagrams.

Proof: First notice that no two terms in

e\ = Z ngn(m)h,\w\

{ha} {or}

are the same, since

haoy =Ry & (B)Tha=0(un)™) & hy=h) and vy = v}
N—_—— N——

horizontal vertical

as {hy} N{v,} = {e}; in particular ey # 0 and

ex = e + terms proportional to p € S,,\{e}.

In birdtracks we have

ezj\:C’. ‘:. SIE o (%)

] i

C'is a product of factorials (cf. normalisation of (anti-)symmetrisers) and irrelevant
for what follows.

Within the grey boxes the lines are connected in some way (defined by the Young
tableau OF).

We also draw one-box (anti-)symmetrisers,

(] = = L

i.e. each line in the middle is attached to exactly one symmetriser and one anti-
symmetriser.

The number of symmetrisers (anti-symmetrisers) is given by the number of rows
(columns) of ©.

The number of lines attached to a symmetriser (anti-symmetriser) is given by the
number of boxes of the corresponding row (column).

Now all proofs will boil down to the question whether we can find a non-zero connection
in the middle of diagrams like (x).
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(ili) We show exge, =0 V¢ € A(S,) (cf. Theorem 13): First observe that
exge, = 0Vq e A(S,) & expe, =0Vpes,.

Since expe, = sya ps,a, we have a linear combination of terms of the form sypa,, p € S,
which in birdtracks look like the diagram in (x), but with the symmetrisers of e, on the
left and the anti-symmetrisers of e, on the right. Let A > p.

The first (longest) symmetriser goes over A; lines. For s)pa, to be non-zero we have to
connect each of these lines to a different anti-symmetriser, of which there are p; many. If
A1 > pp then at least two lines have to be connected to the same anti-symmetriser and the
term vanishes.

If Ay = p; we continue with the second symmetriser: s lines which have to be connected
to anti-symmetrisers that go over at least two lines — there are py many of these. If Ay > o
we get zero.

If Ay = po we continue with the next symmetriser, but eventually we reach the first j s.t.
/\j > Wy

(i) (€})? = shalshal is a linear combination of terms of the form s{ga’, ¢ € S,,. We already
know that s§qaf # 0 for ¢ = e (since that’s just €f). Varying ¢ we get, by inspecting (x),

e the same result, if ¢ interchanges only lines which are attached to the same sym-
metriser,

e at most a sign if ¢ interchanges only lines which are attached to the same anti-
symmetriser,

e zero if ¢ changes the way in which the symmetrisers and anti-symmetrisers are con-
nected.

Thus, (e})? = e, but we still have to show that 7, # 0. However, if 7, was zero then €
would be nilpotent. Then the trace of the map A(S,) > ¢ — ¢e would be zero, but the
trace of this map is n! (coefficient of e times the order of the group, cf. Section 4.3.1).

(i) efgel = shakgshal is again a linear combination of terms of the form sygak, ¢ € Sy;

we have shown in (i) that they are all proportional to €f.

(iv) Since €} = peyxp™ we conclude that eipey = pexp™'pey 6 pxex # 0.

g

Remark: Unfortunately, for n > 5 the Young operators for the standard tableaux no
longer satisfy efe§ = 0 Vp # ¢ (they still satisfy efe? = 0 VA # pu, see (iii) above).
However, the ideals generated by the Young operators of the standard tableaux are still
linearly independent (Exercises) and

AS) = B ASn)e.

{ standard gp
tableaux A

(without proof). In particular this implies that dim (A(S,)e}) is given by the number of
standard tableaux for the partition \.
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5.5 Calculating characters using Young diagrams

The characters of the irreps of S, and in particular their dimensions d,, = x*(e), can be
evaluated with the methods of Section 4.3.1. There are more efficient methods which we
give here without proofs.

These methods are bases on the Frobenius character formula (or Frobenius-Weyl-Charakter-

Formel) which relates characters of irreps of S, to characters of irreps of S, with m < n.

e The dimension dy of irrep I'* with Young diagram ©, is given by the number of
standard tableaux for the partition ©,. Two other formulas:

[Lic; (i = ¢5) n!

h [LGE T ha
with
n! = |S,|
i,7=1,...,7 (r = number of rows of ©))
k=1,...,\ (A = number of boxes in row %)
bi=N+r—1i

h;rx = number of boxes below and to the right of box i, k + 1 for the box itself,
called the hook length of the box i, k

Examples:

(0 [ ]

h23:7

(ii) Young diagram with hook lengths written into the boxes:

6/4]2]1] 7]
@)\:31 = d)\: ’ e
1 6-4-2-1-3-1-1

35

e This implies that S,, has only two one-dimensional irreps (I'® and T'®, cf. Section 5.1)
with Young diagrams:

FS : “ee , F'(). .
| ——

n boxes

n boxes.

(T[]
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e For an irrep I'* we obtain the associate irrep I'* by transposing ©,, i.e. by inter-
changing rows and columns:

o = . 6=

¢ Recursive evaluation of characters of irreps of 5,:

— The boundary of a Young diagramm is the right and lower boundary,
i.e. a boundary field is any field, s.t. there is no field to the lower right of it.
Example: 1
312
54

6
7]
— skew-hook := connected piece of the boundary, s.t. after removing this piece we

retain a Young diagram.
In the example above: 1-2, 1-4, 1-5, 1-7, 2,24, 25, 2-7,4,4-5,4-7, 7
= All end boxes of rows are starting boxes of skew hooks,
all end boxes of columns are end boxes of skew hooks.
— Each hook corresponds to a skew hook and vice versa.
The hook length is equal to the length of the corresponding skew hook.
Example: The skew hook 1-5 corresponds to the following hook:

1
1

2

w

614
7

— A skew hook is called positive (negative), if the number of its vertical steps(=
number of rows —1) is even (odd).
— Let ¢ be a conjugacy class of S,, with disjoint cycles of lengths a1, as, ..., a,.
Wanted: character x2 of this class in irrep '
x Choose any cycle of ¢, say with length a;.
* Denote by ¢ the class of S,,_,,, obtained by removing the cycle a; from c.

* For the Young diagram ©, determine all skew hooks of length a; and denote
the Young diagram(s) of S,,_,,, obtained by removing such a skew hook by
©5. Then

Xo =) +x2
A

with “+4” for positive skew hooks and “—" for negative skew hooks.
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x Iterate this procedure.
* If no box of the Young diagram remains then XZ\):O =1.
(Don’t forget the sign of the last skew hook removed!)

* If there is no skew hook of length a; then x} = 0.

This method is most efficient if we choose the cycle a; s.t. there are as few skew hooks
of length a; as possible.

Examples:

1. Si3, ¢=(7,4,2), T*=(6,3,3,1) =

— There is only one (skew) hook of length 7:

k
k| k
(6,3,3,1) (2,2,1,1)

= X2 = TX(@2)

— Now there is only one (skew) hook of length 4:

‘*‘* *

6,3,3,1 9 o
= XE7,4,2) ) = +XEQ; =1 (trivial rep)

2. Once more, characters of the two-dimensional irrep of Ss,
cf. Section 2.4.1 and Problem 29:

X?;) = -1 (remove completely, 1 vertical step)
X?;l) =0 (no skew hook of length 2)

H _ . H _ _
Xaan) = Xany TXiy =1+1=2

2023-12-07
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6 Lie groups

When speaking about infinite groups we will combine the notion of a group with notions
from others areas of mathematics. There will be precise definitions using notions like
“topological space”, “connectedness” or “differentiable manifold”. However, we will not
introduce all these notions and concepts in detail. If you are familiar with these notions —
fine. If not, don’t panic! Some of the subtelties will not be relevant for the cases we are
interested in, so we will gloss over them. Aspects which are important in our context will be
introduced and discussed carefully, such that no prior knowledge beyond, say, multivariable
calculus/analysis in R" will be required.

6.1 Topological groups

Definition: (topological group)
A set G is called topological group if

(i) G (with some operation) is a group,
(ii) G is a topological space,
(iii) the map G 3 g+ g~' € G is continuous, and
(iv) the map G x G > (g, h) — gh € G is continuous.
Examples:

1. Parametrise GL(n,R) = {4 € R™" : det A # 0} by the matrix elements A;; € R,
i.e. GL(n,R) C R™, and choose on GL(n,R) the induced topology of (the standard
topology of) R™’.

e The matrix elements of C' = AB are algebraic functions of A;; and By, i.e
(A, B) — AB is continuous.
e A — A7!is also continuous, since the matrix elements of A~! are rational,
non-singular functions of the A;j.
= GL(n,R) is a topological group.

2. By similar arguments O(n) or SO(n) topological groups as subsets of R™, and
GL(n,C), U(n) or SU(n) as subsets of C"”.

Definition: (isomomorphism)

Two topological groups G and H are called isomorphic, if there exists a bijective map
f G — H, which is both, an isomorphism of groups, and a homeomorphism of topological
spaces (i.e. f is continuous and f~! is continuous).

Example: The group G; = (R, +) is a topological group.

We define the group Gy = (R, @) by

zay=f(f(=)+ fy))
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where
ifx<lorz>2

I,
f(x>:{3—x, if1<z<?2

Notice that f(f(x)) = 2 Vo € R. In Gy, for small £ > 0, we have (1 —¢)™! = =1 + ¢,
but (1+¢)"! = =2 + ¢, i.e. Gy is not a topological group since property (iii) is violated.
f : Gy — G4 is an isomorphism of groups but not an isomorphism of topological groups.
Definition: (homogeneous space)

A topological space X is called homogeneous, if for every pair z,y € X there exists a
homeomorphism f: X — X s.t. f(z) =y.

Remark: Every topological group G is homogeneous, since for any ¢q, g2 € G there is a
(unique) h € G s.t. go = hgy (h = gagy ). Thus, f : g — hg is the desired homeomorphism
(since group multiplication is continuous).

Homogeneity simplifies studying local properties dramatically: It is sufficient to study the
group in a neighbourhood of one element, e.g. in a neighbourhood of the identity.

Later, when we also can differentiate, then we can study local properties by expanding
about the identity. This will lead us from Lie groups to Lie algebras.

Important global properties are compactness and connectedness. (disconnected, simply
connected, multiply connected)

Examples (compactness):
1. Consider O(n) = {A € R™" : ATA = 1}. The matrix elements A;; of A € O(n)

satisfy
n n

d ApAp =65 = Y Aj=n,

k=1 ik=1
i.e. the elements of O(n) can be identified with points on sphere with radius y/n in
R™. The union of these points is a closed'® and bounded subset of this sphere and
thus compact = O(n) is compact.
Similarly for U(n).

2. The Lorentz boosts A (transformations between coordinate systems with relative

velocity v)

v v
Ty — X1 T — ;%o 1 :
Ty = ——, Ty = —=—, (c: speed of light, xg = c-time)
1 ¥ 122 '
c2 c2

form the group O(1,1) and as matrices can be parametrised as

- (s F)eme o

since it’s the solution of a system of polynomial equations

[SHS]

15

75



Since |v| < ¢ we have § € (—1,1), i.e. the parameter range is bounded but not closed
= the Lorentz group O(1, 1) is not compact.

Maybe non-compactness es even more evident when using the parametrisation in
terms of the rapidity ¢ with § = tanht (cf. Problem 11), since then ¢ € R.

3. GL(n,R) is not compact because det : R™*™ — R is continuous but not bounded on
GL(n,R) (since |det(AA)| = [\|"|det A], ¥V A € R).

Definition: (connected component)
The connected component of g € G is the union of all connected sets that contain g.

Remarks:
1. A connected component is actually connected.
2. (a) Let Gy C G be the connected component of the identity e.
(b) If G is connected then Gy = G.

(c) If Go = {e}, then G is totally disconnected as due to homogeneity all other
connected components then also contain just one element.

(d) The connected component of g is gGy = Goyg, since g € gGy (and € Gog)
and since left and right multiplication are homeomorphisms and as such map
connected sets to connected sets.

(e) Hence Gy is a normal subgroup.

(f) The quotient group G /Gy is totally disconnected, since G/Gy = {gGy : g € G},
i.e. for two different elements h1Go # hoGy (of the quotient group) hy cannot be
contained in the connected component of h; (since this connected component is
just the coset hiGy).

Examples:

1. SU(2) is connected (even simply connected), since with the parametrisation of Prob-
lem 22,

U —U
sues o= (1 )
ul* +[vP=1 < (Reuw)* + (Imu)* + (Rev)® + (Imv)® =1,
SU(2) is homeomorphic to S, and spheres S™ with n > 2 are (simply) connected.
2. O(n) is not connected, since OTO = 1 implies
1 = det(OOT) = (det O)? & det O = £1

i.e. O(n) has two connected components, SO(n) = {O € O(n) : detO = 1} and
{O € O(N) : det O = —1}.
Before discussing Lie groups in general, let’s look at an example which illustrates some of
the basic ideas
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6.2 Example: SO(2)

e SO(2) = group of rotations in the plane R? about the origin

e Parametrise by one parameter,
natural choice: rotation angle ¢ with 0 < ¢ < 27.
(Any monotonous function of ¢ would also be finde.)

e Defining representation: action of SO(2) on vector in R? (i.e. as an orthogonal 2 x 2
matrix)

5 Y R with R(o) = (G0 ). )
k

e SO(2) is abelian, since R(¢1)R(p2) = R(d1 + ¢2) = R(p2)R(¢1).

e Derivative:
@(@ _ [—sing —cos¢
dp*"™ \ cos¢p —sing
.. at the identity 1 (¢ = 0)

dR 0 -1 : . 0 —i
d_¢(0>:(1 O)::—lJ with J:(i O> :

(the factor (—i) is physicists’ convention)
J is called generator of the group, since. ..

e Seek a differential equation of the forrn = AR:
dR, . (—sin¢g —cos¢ _
d_¢(¢) N ( cos¢p  —sin ¢) MR(@
=R(~9)
_ (—sing —cos¢ cos¢ sin¢
N ( cos¢ —sin ng) (— sin¢g cos gb) R(9)

- ((1’ ‘01) R(¢) = —iJR(9)

Hence R(¢) solve the initial value problem 4% = —iJR, R(0) = 1 = R(¢) = e /%,

dé
e With J?2 = 1 we have

o0

_—iJ¢ __ (_l)n n n
R(¢) =e —nZ;—m T
i J2n ¢2n i ( 271+1 J2n+1 ¢2n+1
n=0 n=0 (2
h\/—’ N ~~ d
=Dy —_ij =0” 4

(2n)! @n+1)!

= 1 cos(¢) —iJsing. v ocf. (%)
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Viewed as a representation on C? (although we introduced it as a representation on
R?) the defining representation is reducible. It can be reduced by diagonalising J:

J = (? Bl) has eigenvalues 1 with eigenvectors ey = <:iii>’ e

Jey = +ey = R(¢)er = ey,

we find two one-dimensional (and thus irreducible) unitary representations, e*?.

Consider now a (complex) vector space V, dim V' = n, and a representation of SO(2)
in terms of unitary matrices U(¢) acting on V.

We can write
U(9) = e
with a Hermitian n X n matrix J, since then
Ul U () = e 9167102 — o=(A14¢2)  (hecause the exponents commute)
=U(¢p1 + ¢2) and
V(@) =o' =0 = U(-¢) = U(g) ™"
By diagonalising J we can completely reduce U = all unitary irreducible represen-

tations are one-dimensional (also since SO(2) is abelian, cf. Problem 13).

Now seek one-dimensional unitary representations, i.e. J € R. Due to U(27) = U(0)
we demand .
| & J=mel,

i.e. the unitary irreducible representations U™(¢) = e~ are labelled by integers m:
(i) m=0: R(¢) — U°(¢) =1 (trivial representation)
(ii) m=1: R(¢) — U'(p) = e '?
Isomorphism between SO(2) and the unit circle in C, i.e. SO(2) = U(1); thus
everything observed for SO(2) is also true for U(1).

(iii) m = —1: R(¢) — U Y(¢) = e?,

like (ii), but unit circle covered in opposite direction.

(iv) m = £2: R(¢) — U*?(¢) = eT29.
Homomorphism SO(2) — U(1), with unit circle covered twice.

Similarly for larger m.

Only the representations with m = +1 are faithful.

Now consider f : SO(2) — C (sufficiently nice).
Parametrising SO(2) by the rotation angle ¢, f has to be a 2w-periodic function of

¢. Then )
/O f(®) o
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is invariant under ¢ — ¢ + « for any fixed «; essentially, we integrate over SO(2),

with normalisation chosen s.t. [SO(2)] = [ 3¢ = 1.

With his we obtain: Orthogonality of representation matrices / characters (cf. The-
orem 6 and corollary to Theorem 6),

27
dé _ [ itm—me 49

=4
27 0 o2r

2
| @
0
and completeness (cf. Problem 19), i.e. the Fourier series of f,

e e, =Y U@)en

nez nez
1 2 oy d /
with ¢, = — / " f(¢) d¢' = / Un(¢')f ¢
2m J,

converges to f (pointwise for, say, continuously differentiable f, otherwise at least in
the L2-sense),
Physics notation:

21
nez

:/OW1 &) T (&) f(¢/) dd .

J/

—5(6—¢')

(0-function/-comb as integral kernel of Fourier expansion)

6.3 Lie groups

Definition: (Lie group)
A set G is called Lie group, if:
(i) G is a group,
(ii) G is an analytic manifold,
(iii) the map G 2 g — ¢g~! € G is analytic, and
(iv) the map G x G > (g, h) — gh € G is analytic.
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Remarks:

1. An n-dimensional analytic manifold M is Hausdorff space equipped with charts
(Uj, ¢;), i.e. Uy € M open and homeomorphisms ¢; : U; — ¢(U;) € R", with

(i) M =U,U; and

(11) @j° (p];l . gOk(U] N Uk) — ng(Uj N Uk) analytic i j, k
(i.e. can be expanded into convergent power series).

2. This means that locally the group elements are analytic functions of n parameters,
where n is the dimension of G (as a manifold), more precisely:

Consider a chart (U, ) and g, h,gh € U. Denote by z;, j = 1,...,n, the coordinates
of g, and by y; the coordinates of h, i.e.

QO(g) - (‘rlvx%”-;xn) :xERn
Sp(h) = (y1>y25'-'7yn> =v.

Then the coordinates z; of gh,
o(gh) = (21,22, .., 20) = 2,
are analytic functions of z and v,
zj = fi(z.y).

are analytic functions of x.

3. Now choose U with e € U and ¢ s.t. p(e) =0 € R", and f as above. Then

fj(ﬂf,O):[L'j, fj(07y>:yﬂ
of; of;

Similarly, the coordinates of g~!

h Z1(0,0) = £2(0,0) =
and thus Dy (0,0) I (0,0) = dji
02 f; df;
d al J = — =0.
and also G0, 0,0 D00 (0,0) =0

Expand f(x,y) about (0,0),

o2
fi(z,y) = xj—l—yj—i-zaxkgl 0,0) zpys + ...
‘,_/

=way,

and define
o ] J
C?cl = Qg — Ay

the structure constants of the Lie group (coordinate dependent). They satisfy:

(i) For abelian groups ¢}, = 0, since then f(x,y) = f(y, x).
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(i) e :4_% 4 4

(ii) 3 2u(ChiChm + ChiChun + i) = 0
The last identity follows from associativity of group multiplication by comparing the
third order terms in the coordinate expansions of g(hg) and (gh)g.

Examples: matrix Lie groups

1. Consider the matrix elements A;; € R of a group element A € GL(n,R) as coordi-

nates. The map
w:an—HR, A det A

is continuous, and thus the preimage 1~(0) of the closed set {0} is closed. GL(n,R)
is the complement of ¥~(0) and hence open and an analytic submanifold of R™.
e The matrix elements of C' = AB are algebraic functions of A;; and By, i.e
(A, B) — AB is analytic.
e Likewise A — A~!, since the matrix elements of A~! are rational, non-singular
functions of Ajj.
Hence GL(n,R) is a Lie group.
2. For GL(n, C) consider real and imaginary part of the matrix elements as coordinates

and argue as before (in terms of submanifolds of R?").

3. For groups like O(n), U(n), SO(n) or SU(n) one first observes that they are closed
subgroups of GL(n,R) or GL(n, C), respectively. One can show that closed subgroups
of Lie groups are Lie (sub-)groups. (Later we will study some of these more explicitly.)

6.4 Lie algebras

Definition: A Lie algebra g is a vector space over a field K (here mostly R, sometimes
C), with an operation

[]:axg—g
(X,Y) = [X,Y]
called Lie bracket, which satisfies (V X,Y,Z € g):

(i) NX +uY, Z] = NX, Z] + plY, Z] VipneK (linearity)
(i) [X,Y]=—[Y, X] (anti-symmetry)
(i) [X,[Y,Z]]+[Y,[Z, X]|+[Z,[X,Y]] =0 (Jacobi identity)

Remarks:

1. A Lie algebra is called commutative if [X,Y] =0V XY € g.
2. One can show that the tangent space to a Lie group G at the identity is a Lie algebra g.

To this end consider curves g(t) in G with g(0) = e. Then the derivative (in a chart) at
t =0 is a tangent vector.
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For matrix Lie groups we can explicitly define the Lie algebra elements, also called gener-
ators, as matrices:

ig(0) = —%(o) cq.

The Lie bracket is now the matrix commutator (rather times (—i), see below)
X,Y]= XY —YVX.

The commutator is linear and anti-symmetric, the Jacobi identity can be verified by direct
calculation.
It remains to show that X, Y € g implies that also (—1)[X,Y] € g.
To this end consider a curve g(t) with ¢g(0) = e, and thus X := —ig(0) € g.
Define another curve g(t) = hg(t) h=! with §(0) = heh™ = ¢, i.e.

—ig(0) = h( —ig(0))h t =hXh ' € g.

With yet another curve h(t) with h(0) = e, i.e. Y := —ih(0) € g define

Xt)=ht)Xh(t) ' eg.

The derivative also takes values in g (since g is a vector space), and thus

X(0)=iYX 4+ X(iY) = —i(XY —YX) = (-i)[X,Y] € g.
Here we have used that %h(t)*llf:o = —iY’, which follows from & (h(t)~*h(t)) = 0 and
the product rule.)
Choosing a basis {X,} of g we have
(X5, X =1) X
[
with the structure constants cg-k of the Lie algebra (basis dependent).

The structure constants of the Lie algebra are equal to the structure constants of the
corresponding the Lie group (see Section 6.3) — supposing an appropriate choice of basis
and coordinates: As basis {X} for g choose the tangent vectors to the coordinate lines in a
chart U > e, i.e. for matrix Lie groups in an explicit parametrisation by taking derivatives
with respect to the parameters,

X;=—ig(0) with g(t)=¢7'(0,...,0,2; =1,0,...,0),

In Section 6.3 we compared expansions of gh and hg, here we expanded hgh~!'—g. The
properties (ii) & (iii) of the structure constants of Section 6.3 now follow from the Lie
bracket properties (ii) & (iii) of the commutator.
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3. It is sufficient to consider special curves, namely one-parameter subgroups, i.e. solutions
of the initial value problem

g9(t) =iXg(t), ¢(0) =e,

with X € g. One writes g(t) = exp(iXt). For matrix Lie groups this exponential is given
by the absolutely and uniformly convergent series

exp(itX) Z ) (cf. Problem 33).

v=0 !
For the special groups with det ¢ = 1 the generators are traceless, since
det g(t) = det(e™) = "X £ 1 & trX =0.
For unitary groups, i.e. gg' = 1, the generators are Hermitian, since
g =g(t)" o ™= o x=Xxf

(See Problem 33 in both cases.)
Examples:

1. G = S0O(3), i.e. rotations in 3 dimensions; defining representation in terms of 3 x 3
matrices R,
T+~ RT,
e.g. rotation by angle ¢ about the z-axis:

cos¢p —sing 0
R.(¢)=|sing cos¢p O

0 0 1
Generator:
0 1 0
dRz )
J3 = J,: i 0)=|—-1 0 0| € g=s0(3)
¢ 0 00

(Hermitian and traceless). Similarly for rotations about the z- or y-axis,

0 0 O 0 0 —i
J=J=10 0 i and Jy=J,=10 0 0
0 —1 0 i 0 0
One verifies by direct calculation that [J,, J,| = —iJ, etc., i.e.

J]7Jk _1253kl Jl
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with the structure constants of SO(3) or so(3):

1, 7, k, 1 cyclic
gjm =14 0, atleast 2 indices equal .
-1, otherwise

2. G = {04 operators for rotations} (again, consider either as elements of some group &
isomorphic to SO(3) or as a representation of SO(3)), acting on functions f : R® — C
(cf. Section 2.4.1), say f € C'(R?) as

(Orf)(Z) = f(R™'F)  with R € SO(3).

Once more, rotation by angle ¢ about z-axis:
T

(Or. ) f)(x,y,2) = f (RZ(¢)’1 (g)) = f(zcos¢p+ysing, —rsing + ycos ¢, 2) .

Generator (viewed either as element of g or as representation of an element of s0(3)):

g On e )| == (GHous g @) =i (éfy V5:) I

d¢

$=0

In quantum mechanics L, = %(aza% —ya%) is the z-component of the so-called angular

—

momentum operator L = & x (V) (here & = 1). Commutators and structure
constants as in the previous example.

Remark: In physics the generators typically are operators corresponding to quantities

that can be measured (observables). 9093.12.19

6.5 More on SO(3)
We study some global properties of SO(3) in terms of an explicit parametrisation.

e SO(3) = rotation group in 3 dimensions: 3 real parameters
Consider, e.g., an orthogonal matrix R € SO(3), consisting of 3 orthonormal columns:
15¢ column, choose freely ~ 2 parameters (angles — point on a 2-sphere), 2°¢ second
orthogonal to 1% column, otherwise arbitrary ~» 1 parameter (angle).

e We can parametrise rotations as Rj(1), with rotation angle ¢ and rotation axis 7,

sin 6 cos ¢
n = | sinfsin¢
cos
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parameter ranges:

0<o<m
0<o¢p<2r

0<y<m (since we have 7 and —77)

redundancies: (i) Rz(0) = R (0)
(i) Ra(m) = R_z(m)

A rotation thus corresponds to a vector J = 1, i.e. SO(3) corresponds to a ball in
three-dimensional space with radius .

Using the cartesian components of ¢ as parameters, —i R /0, yields the generators
of Section 6.4.

Back to the parametrisation in terms of 0, ¢, . ..

This fixes redundancy (i), and due to redundancy (ii) antipodal points on the surface
of the ball have to be identified (i.e. SO(3) is homeomorphic to the real projective
space RP3).

Consequently, there are two kinds of closed curves in SO(3): Curves which can be
continuously contracted to a point, and curves for which this is not possible, i.e.
SO(3) is connected but not simply connected.

Curve b is also closed in SO(3).
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These global properties influence the possible representations of the group (as we will
see later).

e Further observations:

Rotations about a fixed axis form a (one-parameter) subgroup of SO(3). Such a
subgroup is isomorphic to SO(2) (cf. Section 6.2).

For arbitrary rotations R € SO(3) we have (can be shown explicitly using the gener-
ators of Section 6.4)

RRz(¢Y)R™ = Ry(¥) with 7' = Rni.
This implies that all rotations by the same angle are in the same conjugacy class.

Alternative parametrisation in terms of Euler angles
We just list some formulae; can be checked by direct computation.

e Every rotation can also be expressed in terms of Euler angles,

R = R3(a)R2(B) Rs(y)
with

costy 0 sin®y

Ry(¢) = Ry(¢) = o 1 0
—siny 0 cosv

costyy —siny 0

R3(¢) = R, () = [ sinyy  cosyp 0
0 0 1

e parameter ranges:
0<a,v<2m
0<p<m

e relation with axis-angle parameters:

1
6=5m+a=7)

B
2
Sin oY
S11 5

tan
tand =

P

cos ) = 2 cos? é cos 1
2 2
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6.6 Invariant integration: Haar measure

When representing finite groups we often used the rearrangement lemma as follows

ST =D flhg) =3 flgh) VheG.

geG geG geqG

For continuous groups we would like to replace } | . f(g) by an integral, say, Jo f(g)du(g).
To this end we need an invariant measure pu.

Theorem 18. (Haar measure)
FEvery compact topological group possesses a right- and left-invariant measure i, called Haar
measure; it is unique up to normalisation.

(in this generality without proof — but we will show explicitly how to construct pu for
compact Lie groups)

Remarks:

1. Invariance means
p(gA) = u(Ag) = u(A)
V g € G and all Borel sets A C G, and in particular

du(gh) = dp(hg) =dul(g)  Vg.heq.

2. In the following for compact groups we normalise s.t.

VolG:/du(g) =1.
€

3. Hence (e.g. for continuous functions)

/fhgdu /f )du(h~'g/) = /f )du(g)  and
/fgh du(yg /f )du(g'h™! /Gf(g’)du(g’)

4. Moreover, [ f(g~')d ff ) or du(g™!) = du(g), since
G
[ 1 anto /fhg )dul //fhg )ulh) (o)
fgf(h du(h)
e [ 1o auin.
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5. Uniqueness. If /L and v are both left- and right-invariant and normalised as

Jodu(g) = fG dv(g) = 1, then u = v, since with
D) Jq f(g fG (hg) du(g) and
(i) fo f(f) = Jo f(hg) dv(h

we can conclude that

//fhgd,u ) dv(h (1//]0 ) dpu(g) dv(h /f ) dulg
//f ) dpu(g) dv(h /f ) dv(h

6. One also finds invariant measures under weaker conditions, e.g. locally compact
groups (like GL(n,R) or the Lorentz group) possess left-invariant and right-invariant
measures (unique up to normalisation) but in general the two measures are not iden-
tical.

Many properties follow already from the existence of Haar measure — we don’t have to
know it explicitly. Nevertheless, let’s continue with. ..

6.6.1 Calculating the Haar measure for a Lie group

Parametrise the group elements using n = dim G parameters, i.e.'® g = g(x1,...,x,), then
(locally),

du(g) = o(xy, ..., z,)d"x
with a suitable density o(x) and Lebesgue measure d"z = dz; ...dz,. We now construct
o0 s.t. invariance holds.

First: Behaviour of p under reparametrisation (coordinate change/transition between dif-
ferent charts) z = f(y):

\det <g—£(y)>[ d"y =: o(y) d"y

o
Jacobian

Now expand (—i)g(m)*l%(x) in a basis {X}} of the Lie algebra g,

This is possible, because if g(x) = e then the expression is a generator, else 5% (z) lies in
V)

the tangent space at g(z) and is transported to e by ¢! (z).

16 Actually g = ¢~ Y(z1,...,7,) but we suppress chart-dependence for a moment.
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Alternatively, explicitly consider h(z,t) := g(x) 'g(z + te;), e; a conical basis vector, for
fixed « as curve in G. Then h(x,0) = e and thus

oh dg

85 5 (. 0) = ()" V(e

Claim: The density o(x) := |det A(x)| defines a left-invariant measure.
Proof:

(i) First check behaviour under a (local) change of coordinates x = f(y). To this end
denote g(f(y)) =: g(y). We have

i) ) = 9000 S G0 5 0)
= IZ XA ggj () =iy XAy,
ie. Aly) = A(f(y)) g—i(y) and thus
) . of
B) = | det Ay)| = [t A det 5 (1)

o(f(y))

as required.

(ii) Choose a special parametrisation (in a neighbourhood) of g := hg,

§() = h-g(x).

Then 9%
9(0) g @) = (b g@) M () = gl@) ! (o)

i.e. 9(x) = o(z) which implies the desired invariance,
du(hg) = o(z) A"z = o(x) A"z = du(g) .
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(iii) Any other parametrisation can be achieved by further coordinate changes as in (i).
O

Now check right-invariance: Choose a parametrisation of § := gh by

Then 05 5
g -1 -199 _ p—1:
g(z)~ a%() hg(x) axj(:z:)h h 1;XkAx

Since h ' Xh € g,'" we can write h ' X h = >, Xy o(h)g with a matrix ¢(h), i.e.
g(ﬂ?)il ag —IZXgQD gkA = IZXg
(99[:]
i.e. A(z) = ¢(h)A(z) and thus

dp(gh) = 8(z) A"z = | det A(z)|d"z = | det p(h)| | det A(z)| d"z
= [det p(h)] oz) d"a = | det p(h)[ dp(g)

The factor |det p(h)| is called modular function of G. If |det p(h)] = 1V h € G, we say
that G is unimodular, and the left-invariant measure is also right-invariant.

- 2023-12-21
Consider now

/ £(gh) du(g / F(¢) du(gh™) = | det ()] /G 1(¢') du(g)

and for compact G choose the constant funktion f = 1. Then

/Gd,u(g) = |det p(h™)| /Gd,u(g)

i.e. compact Lie groups are unimodular.

Trivial example: SO(2) (cf. Section 6.2)

Parametrisation
_ [(cos¢ —sing
9(¢) = (sin¢ cos ¢ ) ’

B dg 0 1
=ago- (G ).

1"Every Lie group acts by conjugation on its own Lie algebra (cf. Problems 38 & 40). Explicitly: Let g(t)
be a curve with g(0) = e and —ig(0) = X = §(t) = hg(t)h~! is a curve with §(0) = e and —ig(0) = hXh~!
i.e. hXh t €gVhed.

generator
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1dg, [ cos¢p sing\ (—sing —cosg) (0 —1\ .
9(¢) 1d_¢(¢)_(—singb cosgb) (cosgb —singb)_(l 0>_1X’

i.e. A(¢) =1 and hence du(g) = d¢ (as expected).

Now we proceed with what we can conclude already from the existence of the Haar measure
(even before constructing it explicitly)

6.7 Properties of compact Lie groups

Theorems 2 and 6 (including the corollary) for representations of finite groups also hold for
continuous representations of compact Lie groups, if in statements and proofs we replace

‘%'Z by /G...d,u(g),

geG
ie.:
i) Every finite-dimensional representation is equivalent to a unitary representation.
Yy y

(ii) The matrix elements of unitary irreducible representations I'*, I'V (non-equivalent for
i # v) are orthogonal, i.e.

1

d, 0,07 Ok

/GF“(Q)jk I(g)j du(g)
with d,, = dim I'*.
(iii) Similarly for the characters x*(g) = trI'(g) = >_; T"(9) 5,
[ @) dnle) = b
€

This implies again:
I is irreducible / x(9)*du(g) =1 (where x(g) = trT'(g)),
G

as well as: If I' is a directe sum of irreducible representations, I' = @ a,,I'#, then
o

au—/Gx“—@x(g) du(g).

For finite groups we also showed completeness of the representation matrices’ elements
(cf. Problem 17) and complete reducibility of the regular representation, carried by the
group algebra A(G) (cf. Section 4.3). This implied that there were only finitely many
non-equivalent irreducible representations (see also Section 2.7).
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Similarly one can show that compact Lie groups have countably many non-equivalent
(continuous) irreducible representations, which are all of finite dimension. Moreover, every
continuous representation is a direct sum of irreducible representations. All this follows
from the Peter-Weyl theorem.

Consider the vector space C(G) of continuous functions ¢ : G — C with scalar product

wwwzéaawwww>

(cf. the orthogonality relations for matrix elements and characters above). The role of the
regular representation is assumed by I' defined as

T(h))(g) =d(h'g) Vhed.

rep since

(C(W)(T(h)))(9) = (T()g) (W g) = d(h™ 1" g) = (T(W'h)¢)(g) .
as for the O4 operators, cf., e.g., Section 2.4.1.

Theorem 19. (Peter-Weyl)
Let G be a compact Lie group with non-equivalent irreducible representations I'*, dim I'* =
d,. Then the matriz elements \/d—“F“(g)jk, J.k=1,...,d,, form a complete set of or-
thonormal functions for C(QG).

(without proof)
Remarks:

1. We can thus expand every function f € C(G) as

F9) = cuje T"(9)jn

HyJsk

(convergence in L?-sense) where

cupe =t | T7TGT £19) o).
e
This generalises Fourier series (which we get for SO(2) = U(1), cf. Section 6.2).

2. Completeness in physics notation:

3,k
with

[}@—Mf@mmmsz»
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6.8 Irreducible representations of SO(3)

For every g € SO(3) exists an X € s0(3) s.t. ¢ = X. Choose, e.g., the basis

00 0 0 0 i 0 —i 0
s=(0oo0 -], &K=|0 00|, H=[i 0 0],
0 i 0 -0 0 0 0 0

of s0(3) (generators from Section 6.4 times (—1)) with
[Jj, Jk] = IZ Ejkgjg .
¢

Then

(rotation about axis 7 by angle 1, cf. Section 6.5), since Z(t) := e~itiT Z(0) solves

) 0 —MN3 No T —N3To + Nals
= (—lﬁj) = ns 0 —nNq T | = n3riy — N3 =7 X f,
—MNo nq 0 XT3 —NoX1 + N1 T3

i.e. circular motion / rotation about axis 7.
L =»
X

<y

-
w

e From every representation of a Lie group we obtain (by taking derivatives) a repre-
sentation of the corresponding Lie algebra (in terms of matrices).
With ¢(t), g(0) = e, g(0) =iX and a rep I' of G define the derived rep dI' of g by

dI'(X) = —i(if(g(t))

t=0

e From a representation of the Lie algebra s0(3) we obtain (by exponentiating) a rep-
resentation of the group SO(3), if the global (topological) properties are satisfied.
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The operator

commutes with all generators (and thus with every X € so0(3)):

L2 06 =Y 15 ) =D (15 T + [, Al Jj)

J J
gl =y ;e 7,0 -0
=¢eoi;JjJe

J? is not in the Lie algebra; it is a so-called Casimir operator and an element of the
enveloping algebra (see later). [-, -] is the (matrix) commutator.

2024-01-09
e This further implies [J2,g] = 0V g € SO(3), since g = e with X € s0(3).

e For representations all this also holds for the representation matrices of g, X, and
J2.

e If the representation is irreducible then according to Schur’s Lemma (Theorem 4),
the representation matrix of J? is a multiple of the identity matrix.

Now consider a representation (in general reducible) on a vector space V.

Shortened notation: Denote the representation matricex of g, X, J? also by ¢, X, J?
(instead of T'(g), dI'(X) etc.).

Construct irreducible subspaces (and thus irreducible representations) as follows:

e Choose a suitable starting vector.

e Generate an irreducible basis by repeatedly applying the generators.

Suitable starting vector: Joint (normalised) eigenvector of J? and Js (possible since [J?, J3] =
0), in Dirac notation
Jalm) = m|m)

(Here we do not indicate the eigenvalue of J? when labelling the states, since for the
moment we stay in fixed eigenspace of J?. Later we will write |jm) instead of |m).

Define
Jj: = Jl + 1J2 .

Then
[Ji, Jg] = [Jl =+ iJQ, Jg] = —IJQ + 1(1J1) = :F<J1 + IJQ) = :FJi
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and thus
J3(Jelm)) = (Jods — [Jx, J3])|[m) = (Jam £ Jo)[m) = (m £ 1)(Jxm))

i.e. either Jy|m) oc [m £ 1) or Jy|m) = 0.

Since the invariant subspace has to be finite dimensional this sequence has to terminate
on both sides, say at m = j and at m = ¢ with j > ¢,

Jali) = 3li) Ja|€) = £16) ,

We further have

J_Jy = (Jy —ih)(J1 +idy) = J2 + J2 +i[J1, Js]
= Ji+ J5 — J3 = JS=J+JJ+Js

and

JJFJ, = (Jl + 1J2)(J1 — 1J2) = J12 + J22 — i[Jl, JQ]
=Ji 4+ Ji+ J3 = JP=1+JJ —Js.

This implies

) = (J5 + Js + J_J)|5) = 55 + D) .
TN = (J5 — T3+ JoJ_)|0) = €€ — 1)) .

Since all states lie in the same irreducible subspace, they are all in the same eigenspace of
J? ie.

Jjg+1) =40—-1).

This is a quadratic equation with 2 solutions: ¢ = —j and ¢ = j + 1, but since 7 > ¢ we
have

{=—j and 7 =>0.
Starting from ¢ we reach j with unit steps and thus
j—l=j—(-j)=2/€N
Hence, s0(3) has irreducible representations with j = 0, %, 1, %, 2,...

e The dimension of irrep 7 is 25 + 1.
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e For orthonormal basis vectors, now denoted by [jm), we have
J2|gm) = j(j + 1)|jm)
Jslgm) = m|jm)
Jiljm) =[5 +1) = m(m £ 1)]%[j,m £1)

One obtains the last equation by calculating the norm of Ji|m).

Denote by IV (g) the potential representations of SO(3) defined by
7 (g)lgm) = glim),
i.e. the matrix elements are '
I (g)mme = (jmlglim’) ,
and in particular
L (e )y = (gmle™ | jm’) = (jmle™™ |jm') = e Gy
We have e 2™ = ¢, but TV (e 21/3), ., = e~2™™§, /. i.e. only for

m € Z & 7 €Ny

7271‘1]3)

do we have T (e = 1 and only then we really get representations of SO(3).

Irreducible representations of SU(2)
The Pauli matrices oy, 02, o3 (cf. Problem 34) form a basis of the Lie algebra su(2) with

loj,01] = 2i Z EjkIO7 5
I

i.e. the matrices oy /2 satisfy the same relations as the Ji, and thus su(2) = so(3). Hence
we also already know all irreducible representations of su(2). Since SU(2) = exp(isu(2))
(Problem 37) and since SU(2) is simply connected, we get irreducible representations of
SU(2) for all j € Ny/2.

Remark on the last step: According to Problem 38 the homomorphism ¢ : SU(2) —
SO(3) satisfies ©(e7127%) = Ry(a), but e™'2"7 is not the identity for o = 27. However,
[P (e~4m%) = 15,41 is true for every half-integer j.

Characters

Since all rotations by the same angle are in the same conjugacy class, is it sufficient to
consider rotations about €3:

J

J
X (@) =D TV(Ra,(t))m = Y ™ for SO(3) with j € Ny, ¢ € [0,7),

m=—j m=—j

J J
(o) = Z T (e71593) 0 = Z e ime for SU(2) with j € Ny/2, a € [0,27).

m==j m=—j

In particular, for the defining (or “fundamental”) representations

X'?(a) = 2cos(9), X' (%) =1+ 2cosv.
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6.9 Remarks on some classical Lie groups

Definition: (adjoint representation)
Let G be Lie group with corresponding Lie algebra g, and let g € G. The map Ad : g — Ad,
with
Adj: g — ¢
X = gXg ' =:Ad,(X)

is called adjoint representation of G' (on g).

Remarks:
1. One also defines Ad,(h) := ghg™" for h € G.

2. Ad is a representation since
(i) g is a vector space,

(ii) Ad,(X) € g, since h(t) := geX’g~" is a curve in G with h(0) = e and /(0) =
iAdy(X), and in particular

Y

geiXtg=l — giAdy(X)t
(iii) (Ady o Ady)(X) = Ad,(Ady(X)) = Ady(hXh™) = ghXhtg™" = Adn(X)

3. For X € g one further defines ady : g — g by
1d _1d

adX (Y) = - —AdeiXt (Y)

rr (e¥Ye ™) =[X,Y].

t=0 idt t=0

Lemma 20. (Principal axis theorem for unitary matrices)
For every g € U(n) there exists an h € U(n) s.t. high is diagonal, in particular

el 0

g=nh A

with real ;.

Proof: Reduce to the principal axis theorem for Hermitian matrices.
Let My :={g € U(n) : € is not eigenvalue of g}. Then

fs: My — C™"
g i(e? +g)(e? —g)7!
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(generalised Cayley transformation) maps unitary g to Hermitian matrices A = f,(g), since
AT = (e — ) e )
(=D)(e” + g)(e” +g) 7! (7 — gN) T (e + gT)

"

-1
= (—1)(’ + g)(1 — gl + e g — 1) (e + g
=i(e? +g) (¢“g" —eg) (e + ¢

e

=B

and
B(e? —g) = (9" —e7g) " (e + ¢) (e — g)
= (¢?g' —eg) T (I + g’ —e g 1) =1,
i.e. AT = A. Now there exists an h € U(n) s.t. hfAh = D is diagonal (principal axis

theorem for Hermitian matrices). Furthermore, fy; is bijective (as function from My to the
Hermitian n X n matrices) with

A=i(e”+g)(e” —g)7!

< A(e? — g) = i(e” +g)
& (A —1) = (A+1)g
& g=c%(A+1)HA-1)= fdjl(A).

Now, for a given g € U(n) choose ¢ s.t. g € My, call A := f,(g), and choose h € U(n) s.t.
htAh =: D is diagonal. Then h also diagonalises g:

high = hie?(A +1)"'hhl(A —i)h = (D + 1)1 (D —1).
O

Remark: The analogous result also holds for ¢ € SU(n) C U(n), with h € SU(n), since if
det i # 1, choose h = (det h) ™= h instead.

Theorem 21. For every g € U(n) there exists an X € u(n) s.t. g = X,

Proof: According to Lemma 20 there exists an h € U(n) s.t.

elv1 0
g=nh ht = helV Bl
0 eln
with
©1 0
Y = € u(n)
0 On
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Moreover
’ g= heiYhT _ eiAdh(Y)

i.e. the desired X € u(n) is given by X = Ad,(Y). O
Remarks:

1. With the remark after Lemma 20 we also have: For every g € SU(n) there exists an
X € su(n), s.t. g = e'X.

2. Similarly for g € SO(2n): One first shows that there exists an h € SO(2n) s.t.

Ry 0
g=nh KT
0 R,

with R; € SO(2). For SO(2n + 1) the diagonal matrix has an additional row with a
1. Then also every g € SO(n) can be written as e with X € so(n).

3. In all these cases we can in principle construct irreps using the same strategy as in
Section 6.8 for SO(3) or SU(2): First construct irreducible representations of the Lie
algebra and by exponentiation (potential) reps of the group.

4. The diagonal matrices which appear in this procedure are maximal abelian subgroups
(so-called mazimal tori) of the corresponding group.

6.10 More on Lie algebras and related topics

With the reasoning of Section 6.9 we know when we can go from irreps of a Lie algebra to
irreps of the corresponding Lie group. This was the last step in the procedure of Section 6.8.
In the previous steps we used properties of J2. In the following we discuss more generally
what happened in that step and mention a couple of relevant notions.

Definition: (representations of Lie algebras)
Let g be a Lie algebra and V' a vector space. A representation ¢ is a linear map that
assigns to each X € g a linear map ¢(X) : V — V s.t.

¢(1[X7Y]):[¢(X)7¢(Y)] VX, Yeg.
~—— —_——

Lie bracket commutator

The i-decoration comes from our convention that G = exp(ig).
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Examples:

1. ad: g 2 X — adx with adx(Y) = [X, Y] defines a representation of g on g

adX(adY<Z)) - adY(adX(Z)) = [Xv [Y? Z“ - [Y7 [X7 ZH
=X Y 2l + [V, [Z, X]]

Jacobi identity
= HX ) Y]’ Z ]

:ad[)gy](Z) VZEQ

In a basis {X;} of g the matrix elements of the representation matrices are given by
the structure constants:

adx, (Xy) =: iz X; (adx; )ik
I

= [X;, Xi] =1) X,
l

2. From a rep I' of a Lie group G we obtain (by differentiation) a rep dI' of the Lie
algebra g,

_1d

Cidt

In this Section the i-convention for the exponentiation is not optimal. . .

dI'(X) [(eXh)

t=0

Definition: (enveloping algebra)
Let g be a Lie algebra with basis {X;}. The enveloping algebra E(g) consists of formal
polynomials in the generators

D a; (X)) + > bin(X) (LX) + D emX) (X)) (X)) + ..., g bk, u € R,
J jk gkl

where 1X;1X}, and iX;iX; +1X; have to be identified if [iX},1X}] = 1X;.

Remarks:

1. A representation ¢ of a Lie algebra then also yields a representation of the envelop-
ing algebra (call it also ¢), whereby the formal products and sums become matrix
products and matrix sums.

2. A basis of the enveloping algebra is, e.g., given by those monomials in the generators
for which the indices are non-decreasing from left to right — all other monomials can
be obtained by exploiting the Lie bracket. Examples for SU(2):

0901 = 0109 — [0‘1,0'2] — 0109 — 2i0‘3

010309 = O'1<0'20'3 — [02703]> — 010903 — 2i0’10’1
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Definition: (Casimir operator)
C € E(g) is called Casimir operator if C' commutes with all elements of the enveloping
algebra, i.e. if

[C,A]=0 Y AcE(g).

Example: J? := J? + JZ + JZ for SO(3) (cf. Section 6.8).

Remarks:

1.
2.

In particular a Casimir operator commutes with all X € g C E(g).

This implies e XCe ™ = C' V X € g, i.e. in the cases of Section 6.8 and 6.9, where
G = exp(ig), we immediately conclude gCg~! =C V g € G.

. gCg~1 = C V g € G is even true more generally, since one can show:

e exp(ig) always contains a neighbourhood of the identity in G.

e By taking (finite) products eXeYel? ... one reaches all g € Gy, the connected
component of the identity.

If G is connected, then for representations (of the Lie group, the Lie algebra and
the enveloping algebra) we thus have [dI'(C),T'(g)] = 0 V g € G, and according to
Schur’s Lemma (Theorem 4) it follows that for irreps dI'(C') is a scalar multiple of 1.

In the exercise class we will discuss the Killing form and a method for finding one Casimir
operator for groups like SU(n) or SO(n).
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7 Tensor method for constructing irreducible represen-
tations of GL(IN) and subgroups

7.1 Setting

In the following let V' be complex vector space with dimV = N, ie. V = CV.
Define V¥ =V @ --- @V,
—————

n factors

Form tensor products from |v;) € V, j=1,... n:
® [0;) = |v1) @ |v2) @+ @ |v,) € VO™,

General [v) € V®" are linear combinations of tensor products, and are called tensors of
rank n.

e Representation I' of GL(N) on V®": Defining representation v on each factor,

g € GL(N),
T'(g) X |v;) ®7 )v;)
j=1

continue by linearly to all of V& (i.e. T' = 4®").
e Representation D of S, on V®": p € S,
D(p)(Jv1) @ [v2) @ =+ @ [va)) = [Upm11) ® [Upm12) ® *+ ® [Upm1(m))
also continued by linearity to all of V™.

D extends to representation of A(S,,).

Evidently,
[(g)D(p)lv) = D(p)I'(g)|v)
VpeS, (and also € A(S,),V g € GL(N) and V |v) € V&

Notation: Form now on, we omit [' and D, i.e. we write, e.g.,
gplv) = pglv) .

In a basis... Choose a basis of V: |j), j=1,...,N.

Form a product basis of V®":

|71) @ - @ |Jn) =1 J1---Jn), Jg=1,...,N(k=1,...,n).



General element |z) € V®™

N

|x> = Z le...jnljl o ]n> N le---jn|j1 e j"> )

jl yeer 7j’ﬂ =1 . X
summation convention

Then, e.g., (with p € S,,)

p|x> = xj1..-jn|jp_1(1) x -jp—l(n)>

7.2 Decomposition of V®" into irreducible invariant subspaces
with respect to S,, and GL(IV)

7.2.1 Symmetry classes

e Notation: Let (as in Section 5)
— ©f be a Young tableau
— % the corresponding Young operator

— Ly ={reyx; r € A(S,)} the minimal left ideal generated by ey
p

(cf. Section 5.4: ey = €. The other e} also generate minimal left ideals, and
the corresponding irreps for fixed A are equivalent.)
e Goal: In the following we will see:

— For fixed |v) € V®" the subspace

{rjv) :r € Ly} = A(S,)e,

v)
is invariant and irreducible with respect to S,,.

— For fixed €} the subspace
{X]v) : Jv) € VEr} = yen

is invariant and irreducible with respect to GL(V).

— We can choose a basis |\, o, a) of V& s.t.
A lables the so-called symmetry class, given by a Young diagram,
« labels the irreducible invariant subspaces w.r.t. S,
a labels the irreducible invariant subspaces w.r.t. GL(V).

e For a fixed Young tableau the {e}|v) : |v) € V®"} are called tensors of symmetry ©F.

e For a fixed Young diagram {r|v) : r € Ly, |v) € V®} = A(S,)e, V" are called
tensors of symmetry class .
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Lemma 22. For fized |o) € V" the subspace Th\(a) = {r|a) : r € Ly} is either empty or
(i) T\(«) is invariant and irreducible under S, and
(ii) the S, irrep carried by Tx(«) is given by the irrep carried by L.

Proof:
(i) Let |v) € Ta(«), then Ir € Ly s.t.
|v) = rla)
= plv) =prja) € Ti(a) VpeS,,
€Ly

i.e. T\(«) is invariant under S,. (“irreducible” follows from (ii))
(ii) Let {r;} be a basis of Ly, = {ri|a)} is a basis of T)(«).

a) action of S, on Ly: p € S,

pr; = TjFA(p)ji .
b) action of S,, on T)(a): p € Sy,
prila) = riTA(p)jila) = rila)0(p);:

= The representation matrices on T)(«) are the same as on L), and in particular
T\(«) is irreducible.

7.2.2 Totally symmetric and totally anti-symmetric tensors

o Let O\, = \:\:\ZD, i.e. e, = s is the total symmetriser of S,,,

L, is one-dimensional.

= For given |a) the subspace Ts(«) is one-dimensional = span(es|a)).
These tensors are totally symmmetric (in all indices).

Each Ti(«) carries the trivial representation of S,,.

Example: N =2, n=3 = e, =¢le+ (12)+ (13) + (23) + (123) + (132)]
There are 4 different totally symmmetric tensors:

es|111) = [111) =:|s,1,1)
es]112) = 3(]112) + [121) 4 |211)) =:|s,2,1)
es|122) = 1(|122) + |212) + [221)) =:s,3,1)
es]222) = [222) =:|s,4,1)

We denote the space spanned by the tensors of symmetry class s by 7.
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e Totally anti-symmetric tensors (A = a) exist only for n < N, i.e. only up to rank N,

since for n > N every basis vector contains at least
Oree =1, two identical indices, say j, = j; in [j; ... J,) = anti-
symmetrisation yields zero.

The S,, irrep on T, () is sgn.

e Example: Tensors of rank 2 (n = 2) in N dimensions

eslit) = |id) 1=1,...,N
ealig) = 5 (i) + 1) i#

= N+ w = 1(N? 4+ N) totally symmetric tensors.
ealii) = 0 i=1,...,N
calid) = 5(1i3) ~ 1) i#]

= 1(N? — N) totally anti-symmetric tensors (one for N = 2).

2024-01-18

7.2.3 Tensors with mixed symmetry

As an example consider again tensors of rank n = 3 in N = 2 dimensions, and in particular

Orer = i1’> 2] with e, = [e+ (12)][e — (13)]

From Section 5.3 we know: L, = span(e, (23)e,)

e First we choose |a) = [112),

en|112) = [e + (12)][|112) — [211)]

= 2|112) — |211) — [121)  =: |, 1,1),
(23)e.|112) = (23)[2]112) — [211) — |121)]
= 2|121) — |211) — [112) =: |, 1,2).

Then T, (1) := A(S3)e.|112) = span(|k,1,1), |k, 1,2)) is invariant and irreducible
under Sz (cf. Section 5.3).

e Now we choose |a) = [221). Then

eq|221) = 2|221) — [122) — |212)] =: |k, 2,1),
(23)e,.[221) = 2[212) — |122) — |221)] =: |,2,2),

is a basis for another 2-dimensional, irreducible invariant subspace T} (2).
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e |k, 1,1) and |k, 2, 1) are tensors of symmetry ©, and span the 2-dimensional subspace
T (1) := e, V®3.
(i) T.(1) is invariant under GL(2), since gp = pg Vg € GL(2) and Vp € S3 implies

K

genlv) = ex glv) € T (1).
~~
ev®s
This argument required neither n = 3 nor N = 2, i.e. it is true in general.
(ii) 77.(1) is irreducible under GL(2).

Proof: We explicitly construct the representation matrices for g € GL(2).
glk, 1,1) = g(2|112) — |211) — |121))

recall that ¢|112) = |ijk)gi19j19k2 (sum over i, j, k)

= 2ijk)gingjgre — lijk)giagingr — 1i5k)gingjogm

3 X 8 = 24 terms

= |112) (2911911922 — G12911921 — G11912921)

J

ZQgIdetg
+ |211) (2921911912 — 922911911 — G21912911)
=—g;1'detg

+ [121) (2911921912 — G12G21G11 — 911922911)1

N

~
=—gi1detg

+1221) (2921921912 — 922921911 — 9219229112

~

——2gy; det g
+ |122>\(2911921922 — J12921921 — 9119229212
—g21 det g
+1212) (2921911922 — 922911921 — 921912921)1

=go1detg

The remaining terms have to vanish since T.(1) is invariant under GL(N).
= detg (|/‘€, 1, 1)911 -+ ’K,, 2, 1><_921>)
Similarly one finds
glk,2,1) =detg (|/§, 1, 1) (—g12) + |k, 2, 1>g22) )

Hence the representation matrices,

K g1 —012
r = det ,
(9) g (—921 922 )

are also € GL(2) and every GL(2)-matrix shows up as I'*(g). If the represen-
tation was reducible, all I'*(g) would have a joint eigenvector — obviously they
don’t, and thus the representation is irreducible. Il
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e Similarly one finds: |k, 1,2) and |k, 2,2) are tensors of symmetry 0% and span the
2-dimensional subspace T.(2) := eV which is also invariant and irreducible

under GL(2) and carries a representation that is equivalent to that carried by 77, (1).

e The direct sum of subspaces 7. (a) (a = 1,2) contains all tensors of symmetry class

k with ©, = H.

e Complete reduction of the 8-dimensional space V®3:
(recall that ©, = o and ©,, = )

N J N J
'

Ve = T(1) @ Ts(2) ®Ts(3) ®Ts(4) ®Te(1) ®T.(2) <« invariant under Sy

—N—
= T T (1)®T.(2) <+ invariant under GL(2)

s

T! carries a 4-dimensional irrep of GL(2); under S; it is the dericet sum of 4 one-

S
dimensional subspaces, each carrying the trivial rep.

As a convenient basis for V&3 we can choose:

— the 4 totally symmetric tensors |s, «, 1) with a = 1,...,4 from Section 7.2.2,

— the 4 tensors |k, «,a) with a =1,2 and a = 1, 2.

7.2.4 Complete reduction of V"

The observations and results of Section 7.2.3 generalise as follows (V' = C" as before).

e V" can be completely decomposed into irreducible S,,-invariant subspaces,
Ve = B@T0)
A «

The A-sum is only over Young diagrams with at most N rows (N = dim V'), (cf. the
discussion of totally anti-symmetric tensors in Section 7.2.2).

e A basis of T)(«) is given by the tensors |\, «,a) with a =1,... dim(T)(«)).
The basis tensors can be chosen s.t. the representations matrices for S,, on T («) are
identical for all o (which belong to the to the same symmetry class A:

PN, a,a) = |\, o, b) T (P
——
independent of «

e The decomposition of V®" into irreducible S,-invariant subspaces also leads to a
decomposition into irreducible GL(N)-invariant subspaces:

— The subspaces T} (a), spanned by |\, o, a) with fixed A and «a, are invariant (see
Section 7.2.3) and irreducible (without proof) under GL(N).
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— The GL(N)-irreps carried by 7% (a) for fixed A do not depend on a, i.c. same
Young diagram, different (standard) Young tableaux ~~ equivalent irreps.

Proof: Let |z) € T\(«) C T%. Then 37 € A(S,) with
|z) = rey|a) .
For every g € GL(V) we have (since gp = pg Vp € S,,)
glrex)la) = (rex)gla) € Ta(ga) C T3,

i.e. g does not change the symmetry class (we already knew this since
T = @ T%(a) is invariant under GL(N)), and thus
a

g’)‘v a, a) = |)‘7 B? b>r)\(g)(ﬁb)(aa)

(summing over the index pair (8b) — summation convention).

Now we show that I'*(¢) ss)(aa) is diagonal in the indices (a, b).
Let g € GL(N), p € Su:

gpl\, a,a) = g\, o, ) DXp)ew = A, B, B)T9) (85)(ac) D (P)ca

and

pg|/\7 «, CL> = p|>‘7 57 C>F)\<g)(5c)(aa) = |/\7 67 b>D)\(p>bc PA(Q)(BC)(O«I) .

Due to gp = pg the r.h.s.s are equal. For fixed a and (3, instead of the Latin
indices we write a matrix product:

I'*(g9)pa D*(p) = D*(p) TN(9) o -

Since this is true V p € S,, we conclude with Schur’s Lemma (Theorem 4) implies
that T(g)sa is a scalar multiple of the identity, and thus i.e. I'*(9)ge)aa) i
diagonal in the Latin indices. O

2024-01-23

7.2.5 Dimensions of the GL(IV)-representations

Essentially we already know the dimensions of the GL(N)-irreps: To each Young diagram
O, corresponds an S,-irrep D* and a GL(N)-irrep I'*. For the S,-irreps we can determine
dimensions and multiplicities (within V®") using the methods of Sections 4.3.1 and 5.
According to the construction in Sections 7.2.1-7.2.4 the multiplicity of D* is equal to the
dimension of I'"* and vice versa. Determining the dimensions in this way can be tedious,
and there are several other algorithms and formulae. . .
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Graphical rule: Consider a Young diagram, e.g. Eﬂj (i.e. S7), and the corresponding
normal Young tableau

112]3]4]
Or=|5]6 .
7]

Apply the Young operator ey to |iy...i7). (ip € 1,2,..., N, in general N # n; here n = 7)
Question: Which starting vectors lead to linearly independent results?

Write the s into the Young diagram:

iy | |5 |44
is |ig (*)

It was ey = syay (see Section 5.3), and hence
(i) exliy...in) = 01if in a column at least two numbers are identical.
(ii) eyun = sgn(vy)en, and thus eyvy|iy .. .0,) and ey|iy .. .4,) are linearly dependent.

Therefore, it is sufficient to consider starting vectors [iy ...4,) for which the numbers in
each column of (x) are increasing.

Now choose the is s.t. the entries in each row are non-decreasing. (Here equal values are
allowed!)

One can show:
(i) The eyl .. .14,) obtained in this way are linearly independent.
(ii) exhaliy...i,) is a linear combination of tensors already constructed.

Due to hyey = ey the eyliy...4,) are symmetric in all és that stand in the same row in
(*). This restricts the number of basis tensors that can be constructed from a fixed set
{i1,...,1,} of indices.

With these rules we can determine the dimensions of the GL(V)-irreps, e.g. we have for
N =2 (cf. Section 7.2.3)

dmIT =2  and dimI™7 =4,

since the allowed choices are

1]1] 1]2]
5 and 5

aswell as [1[1[1], [1[1]2], [1]2][2] and [2][2]2].

For E and N = 2 there is no allowed choice for the distribution of the numbers 1 and 2.

(This is consistent with the fact that there are no anti-symmetric tensors with n > N cf.
Section 7.2.2.)
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We also find dim I'™ = 2 for GL(2), since [1] and [2], and in general
dimI™ =N for GL(N),
where we write ['” for the defining representation, i.e.

V®”:D®...®D.
—_—

n factors

Finally we can express the result of Section 7.2.3 as

OeJe[=[T T Jeeo

2 -2 -2 = 4 4+ 2 + 2
for N = 2! In the exercises we will also study N = 3 and higher.

The above method is convenient for fixed N. In the exercises we will see a method using
birdtracks, which yields the dimensions as functions of V.

Further formulae for the dimensions of the GL(N)-irreps (without proofs):

dm@w<H;Q@ﬂ@+N@Nﬂ :<H;JIRM—&—Hﬂ

i,J=1,....m el i<

number of boxes in row i of ©)

B H N+j—1 (product over all boxes of O,

hi; i = row index, j = column index)

hook length of box 4, j (see Section 5.5)

Back to the example V&3 N = 2:

dim(FE) = det (4 1) =4

0 1
_241-1 2+42-1 2+43-1_ 23
B 3 2 1 32
dim(FHJ) = det (Zl)) 1) =2
24+1—-1 24+2—-1 2+1-2 2
_ 2T - 2 =>.3.1=2

3 1 1 3

Remark: Using the tensor method one can construct all(?) polynomial representations of
GL(N), i.e. reps for which the elements of the representation matrix for ¢ € GL(N) are
polynomials in the the matrix elements of g. There are also other reps of GL(N), e.g.

(a b ~ (1 loglad — bc|
o= (¢ n) e t@= (5 )
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7.3 Irreducible representations of U(/N) and SU(N)

The irreducible representations of GL(N) (read GL(N,C), with dimension 2N? as a real
manifold) from Section 7.2.4 also restrict to representations of subgroups, which do not
need to be irreducible. They are, however, irreducible for U(N) (dimension N?) and SU(N)
(dimension N*—1) but in general not for O(N) and SO(N).

Idea behind this:

e The generators of GL(/N) are the generators of U(/N) complemented by i times the
generators of U(N). ~» If one can block-diagonalise the representation of the gen-
erators of U(/V) one can also block-diagonalise the generators of the corresponding
GL(N) rep.

e The generators of U(V) are the generators of SU(NN) complemented by a multiple of
the identity matrix. ~» If one can block-diagonalise the representation of the gen-

erators of SU(V) one can also block-diagonalise the generators of the corresponding
U(N) rep.

No such simple relation exists for O(N) or SO(NV) (dimension N(N—1)/2 in both cases).
Already for V' ® V', which under GL(N) decomposes into symmetric and anti-symmetric
tensors, the corresponding SO(NV) rep on the symmetric subspace contains the trivial rep:
Choose a basis {|j)} of V; then |j) ®|j) (summation convention) is invariant under SO(N):

g(17) @13)) = (Ik) @ 10) gri9e; = (k) @ 16)) ke = [k) @ |k) .
In the following we are interested in SU(N).

For SU(N) the two irreps corresponding to the Young diagrams (with row lenghts)
(A1, ..., An) and (M +k, ..., Ay+k) are equivalent, e.g.

and

for N =5 and k = 1. (Proof: see Problems 46 & 47.) (For GL(N) they differ by a
factor of (det g)*, and det g = 1 for g € SU(N).) In particular, the Young diagram ©, =

(N boxes) corresponds to the trivial representation, i.e. g — 1V g € SU(N). Tensors which
transform under SU(NN) in the trivial representation are called SU(N) scalars or SU(N)
singlets. These tensors do, however, transform under S,, in the totally anti-symmetric rep

(sgn).

Irreducible representations of SU(2)
e defining/fundamental representation: 0, dimension 2
e trivial representation: H, dimension 1

e N =2 = the Young diagrams have at most 2 rows, i.e. every irrep is equivalent to
— either H,

eg M ~ 5 ~ HH ~ £



— or a one-row Young diagram, obtained by omitting all two-box columns,
cg D ~ oo ~ HFD ~ EFD

= Besides H we only have to one-row diagrams.

e Dimension of the irrep corresponding to a one-row diagram with £ boxes:

1l (] fa2], [1]-]2]2], [2]-[2]2]
k + 1 possibilities

...or using hook lengths:
IIN+j—i f12+j1(k+D!

= = =k+1
k—j54+1 k! *

ij i=1

= For SU(2) there is exactly one irrep for each k € Ny, with dimension k + 1 (cf.
Section 6.8, where we arrived at the same result by different means.)

Irreps of SU(3)
e fundamental rep: O, dimension 3
e triviale rep: al dimension 1

e N = 3 = all Young diagrams have at most 3 rows, more precisely, all irreps are
equivalent to either Hora diagram with at most 2 rows, i.e. (A1, Ay, 0) with

1 M +2)?2 M+2 1 1
dm@ﬂ:§@t(k+n2&+ll :;M+%OrﬂﬂM—M+U-
0 0 1

7.4 Reducing tensor products in terms of Young diagrams

Given two irreps I'* and TV of GL(N), U(N) or SU(N) with Young diagrams O, and ©y.
Task: Completely reduce the product rep I'* @ TV
[examples motivating the following rules] e

From what we have learned so far one can deduce the following graphical rule (without
proof):

1. Write the number 7 in all boxes of row 7 of © ..

2. Add the boxes of Oy to O,, in the first step the 1s, in the second step the 2s etc.
adhering to the following rules:
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(a) In each step the resulting diagram has to be a valid Young diagram and must
not have more than N rows.

(b) A number may not appear more than once in the same column.

(c) When reading the numbers row-wise from right to left beginning with the first
row, then the second etc., there must never be more is than (i—1)s in this
sequence.

3. If two Young diagrams created in this way have the same shape, we only count them
as different if the 7s are distributed differently.

4. For SU(N) columns with N boxes can be omitted.

5. Consistency check: compare dimensions on both sides of the equation!

Illustration of rule 3c:

‘® = ... D 112] & 21D ...

1,2,1,2 1,2,2,1

second 2 comes
before second 1

Examples:
1. SU(2)

= (=0 e (j=2) & (j=3) ® (j=3)

We obtained equivalent results in Problem 41b) by different means.
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2. SU(3)
Overbars in the following examples can be safely ignored; their meaning will be
explained in the next section.

1] ._
o |=8@1
—

_ ]
0r3®3:D®= (@) 2= 1@8@1
2l p

3@3:H®:

3®3:D®=@:6@3

) H
3®3®3:(6@3)®3:(D:|@H)®=@1 o[ e[
T
=108 8p1
‘ o
808 =t Jg L (LI [1gl | |g o1l
2 L SN 2]
[T o [ T [0
= T & e [1]] ®[2]
1 [
. 1 n
[1]1] 1] 1]
= 211@ @ 1%@ 1 e[ 2] o [1
2 2] N 12

= | ‘@Djjee o o @@

=2T0100100808¢ 1

7.5 Complex conjugate representations

Observation: Sometimes dimI'™ = dim I for A # X. This may be “accidental” but
often it can be understood systematically in terms of the following construction.

Example: Consider H for N = 3.

Basis tensors: (anti-symmetric tensors of rank 2 in 3 dimensions)

|23) — [32), 131) — [13), |12) — |21).
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Action of GL(3), e.g.

9(|12> - |21>) = |ij>(gi1gj2 - 9¢29j1)
= ‘23>(921932 - 922931) + |32>(931922 - 932921)

4

~
_ _ 921 Y22
=(128)—[32)) det (2! g22 )

+‘\31>(931912 — g32011) + [13) (911932 — 9129312

:(\31>—\13>)(—1)det(g§1 Z;i)

+i12>(911922 — g12921) + 21) (921912 — 92291127

_ _ 911 912)
—(]12) |21>)det(921 o

similarly for the other two basis elements. We find

det (922 923) (=1) det (gm 923) det (921 922>
932 933 g31 g33 g31 932

9(g) = (—1)det<g” 913) det(g” 913) (—1)det(g“ 912) = adj(g)”,

g32 933 g31 933 g3l 932

dot (912 913) (—1) det (911 913) det (gu 912>
921 923 g?l 923 ng 922

adj(g)

with the adjunct matrix adj(g). According to Cramer’s rule g=' =

detg ie.

H(g) = detg- (g7

Remark: This is true for arbitrary N > 2 and the Young diagram 5] (N —1 boxes).

HEN

For SU(3) we have det g = 1 and ¢g~' = ¢f, i.e. TH(g) = 3. We WriteE = Jand also put a
bar over the dimension

For GL(N), besides the defining rep g also (¢71)%, g and (g~!)7 are N-dimensional irreps,
in general non-equivalent.

For SU(N), due to g" = g~1, we have

(H)'=g and (¢ =y,

i.e. at most two of the four irreps are non-equivalent. For SU(2), even g and g are equivalent,
see Problem 42; for N > 3 they are are non-equivalent. In terms of Young diagrams one
obtains the complex conjugate irrep by means of the following procedure.
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Complex conjugate representations for SU(IV)

1. Consider a Young diagramm with at most N—1 rows. (The only m-row diagramm
corresponds to the trivial rep which is identical to its complex conjugate.)

2. Add boxes to the Young diagram s.t. it becomes a rectangle of height N and same
width as the original diagram.

3. Discard the original boxes and turn the added boxes by 180° — this is the Young
diagram of the complex conjugate rep.

Examples:
1. SU(3) -
L] o~ [x] ~ H:D (see above)
*
2. SU(4)
] al ]
. W% B
* | % | x| * —

3. SU(2) in general

L]~ 1 & Ll =00 k]

This is consistent with Problem 42, in which we showed, by other means, that for
SU(2) every rep is equivalent to its complex conjugate.

4. SU(3) in general

N e e e s O 2 U I = N

i.e. ()\1, )\2) = ()\1, )\1 — )\2)
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8 Applications in particle physics

8.1 Elementary particles

e In the standard model of particle physics there are 3 (4) forces/interactions:
1. strong (nuclear) force
2. electromagnetic force
3. weak (nuclear) force
4. (gravitation)
(2. & 3. together: electro-weak force)

3 (4) kinds of “elementary” particles:
1. leptons (e.g. electron): spin 3, do not interact via the strong force
2. hadrons (e.g. proton, neutron): interact via the strong force
3. particles which “carry” the forces (e.g. photon, gluon): integer spin

4. Higgs boson

Hadrons are composed of smaller particles (quarks with spin %) and come in two

kinds:
(a) baryons (~ qqq, e.g. proton, neutron): spin = 1,3, ...

(b) mesons (~ gq, e.g. pions): spin =0, 1,2,...

lepton number:

1 for leptons
L=< —1 for anti-leptons
otherwise

e baryon number:

for baryons
B =< —1 for anti-baryons
0 “otherwise”
1

quarks: B = z, anti-quarks: B = —

1 1
B 3
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8.2 SU(2) isospin

e experimental observation: Among hadrons we find sets (“multiplets”), with approxi-
mately the same mass (= eigenvalue of H),
e.g. proton p and neutron n (baryons): m, ~ m,, ~ 940 MeV or
the three pions (mesons): myo &~ m + ~ m,- ~ 140 MeV.
e theoretical explanation:

— The strong force (essentially) determines the masses, and it is independent of
the electrical charge.

— The (small) mass differences (within a multiplet) come from the electro-weak
force.

e The degenerate states should transform in an irrep of an “internal” symmetry group,
which is initially unknown.
~» Find a group which explains the observed particle (mass) spectrum,
i.e. degrees of degeneracy = dimensions of irreps.

e Consider first p and n and define an object with two components, the nucleon,

N:(g).

— Lives in a 2-dimensional space, called “isospin”-space.
— Consider SU(2)-transformations on this space, with generators Iy, I, I5.
— phas I3 = 1, n has I; = —3 (by definition)

— The Hamiltonian for the strong force commutes with all 3 generators, i.e.
[H,1]=0.

We say the strong force is invariant under SU(2)isospin-

— N transforms in the 2-dimensional fundamental rep, or doublet rep (I =

SU (2) isospin-

— Electrical charge @ is then given in terms of isospin by @ = I3 + %

) of

1
2

e Other hadrons transform in different irreps of SU(2)isospin,

nt i3 =1
e.g. the pions form an isospin triplet (I = 1) with 7#°: I3 =0
n I3 =—1.

— electrical charge doesn’t fit to formula above ~» postulate hypercharge Y (later
U(1)) with

The nucleon (p and n) has Y = 1, the three pions have Y = 0.
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e Different isospin multiplets are characterised by different values of quantum numbers
related to the strong force (B, Y, I, J = spin, P = parity).
For all particles within a multiplet these numbers are identical.

e H invariant under SU(2)isospin does not only have consequences for masses, but also,
e.g., for cross sections (via the Wigner-Eckart theorem and SU(2)-Clebsch-Gordan
coefficients).

8.3 SU(2) flavour

.. which, essentially, is still SU(2)isspin, but on the level of quarks.

e Hadrons are composed of quarks, whose interaction (strong force) is described by
quantum chromodynamics (QCD).

e In nature we find 6 quark-“flavours” (u,d, s, c,b,t),
of which 2 are ‘very light’ (u, d), one “light” (s), and 3 ‘heavy’ (c, b, ).

e In experiments at low energies one observes only particles consisting of v and d.
~ First consider only N; = 2, i.e. a 2-dimensional flavour space.

e The reason for the isospin invariance of hadron masses is, that for m, = my the QCD
Lagrangian is invariant under SU(2)gayour transformations, i.e. the internal symmetry

group is SU(2)gavour-

e The 2-dimensional fundamental rep of SU(2)gayour acts on

(u up quatk (I3 =3, V=3 = Q=2),
K d down quark (I = —3,Y =5 = Q = —3),
i.e. ¢ transforms as an doublet under SU(2)gavour (1 = 3, Y = 3).

(Thus, initially flavour is the same as isospin.)
e In the quark model the two nucleons have “quark content”

p ~ uud L=%3Y=1= Q=1
n~udd  (h=—3,Y=1= Q=0)

(~ means we don’t care about permutations of quarks at the moment,
i.e. we now consider product states of the form [ |®[ J® [ ].

Here [ ] denotes the 2-dimensional fundamental rep with I = 1 and Y =

1
2 3"

e Particles within a multiplet transform in an irrep ~» decompose the product:

Oe0eD=(eH)en-mDe e -o0menen
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in terms of dimensions,
202®2=402¢2

or in terms of the isospin quantum number I,
1o lol 3,141
303¥53=393D5.
In Section 8.4 we will see:

— The doublet (z ) corresponds to a linear combination of the two doublets (I =
LY =1) on the r.hus.

29
— The 4-dimensional irrep (I = %7 Y = 1) corresponds to the A-baryons.

Mesons consist — according to the quark model — of one quark and one anti-quark. The
latter we obtain by applying the so-called charge conjugation operator C' = UK. Here
U is a unitary operator, and K is the (anti-unitary) operator of complex conjugation:
(We don’t care about U here — it acts on degrees of freedom which here play no role.)

Ku=:1u Kd=:d
Consider an SU(2) transformation of the quark doublet:

-0 - @)

i.e. the “anti-doublet” (Z) transforms in 2

Since for SU(2) 2 is equivalent to 2, we can also combine @ and d into a doublet in
such a way that it transforms in 2: With h = (9 ') € SU(2) we have (cf. Problem 45)

and thus h (?ZZ) = (;J) transforms in the same way as (u),

i.e. as an isospin doublet with

<—CZ> (13:%?Y:_%:>Q:%>7
u (13:—%’}/:—%:}@:—%)’

(Here we assumed, that Y — —Y under charge conjugation.)
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Now decompose

-2 =3+1 (dimensions)

®:=1®0 (isospin).

or 2
1
or 3

Construct multiplets as at the end of Section 7.2.2. There we had:
triplet = {|11), 5(]12) +[21)),|22)}, and singlet = —5(|12) —[21)).

— The isospin-triplet (I = 1, Y = 0) describes the the pions:

[3:1: 7T+:—'U/CZ

1 _
I3 =0: 7= —(uu — dd
3 \/5( )

These states are invariant under u <> —d, d <> .

— The singlet is the anti-symmetric linear combination of states which are tensor

products of states with /3 = 1 und I3 = —1

—9 1.e.

1, _ - 1, _ -
—(uu —d(—d)) = E(uu +dd) .

In Section 8.4 we will see that this describes the w meson.

8.4 SU(3) flavour and the quark model

e At higher energies one also observes the strange quark.
~» Consider now Ny = 3, i.e. a 3-dimensional flavour space with internal symmetry
group SU(3)gavour-

e additional quantum number: strangeness S, with Y =S+ B

BI b Y S Q
1 1 1 1 2
5 3 2 3 0 3
1 1 1 1 1
5 2 3 3 0 —3
1 2 1
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e QCD processes leave S (and thus Y') invariant.

e The QCD-Lagragian (or Hamiltonian) is only invariant under SU(3)gayour, if m, =
mg = mg. Due to m, = mg < mg, this symmetry is not exact, but broken to
SU(Q)] X U(l)y
= No perfect degeneracy, but “small” mass differences between hadrons within an

SU(3) multiplet (cf. Problem 49: Gell-Mann-Okubo formula for the baryon decu-
plet).
Remark: The generators of SU(3) (a basis for the 8-dimensional Lie algebra su(3)
— traceless Hermitian 3 x 3 matrices) can be chosen s.t. (o; are the Pauli matrices)

L (Lo
,j=1,2,3, and — [0 1
V3 \o o

gj

0 0

0
0

o O O

-2
are among them. The first 3 generate SU(2); whereas the last one generates U(1)y.

e The defining rep 3 of SU(3)gayour acts on

<
Il
»w Q<

e Mesons consist of one quark and one anti-quark (which transforms in 3). Thus,

decompose
OJeH=He @

or 3®3 =861,

i.e. we expect multiplets of approximately (mass-)degenerate mesons consisting of
8 particles or one particle, respectively.

e Experimentally one finds: The lightest (i.e. ground state) mesons do actually form
an octet and a singlet (together also called nonet), with quantum numbers B = 0
and JE = 07. J is the usual spin.
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— pseudoscalar meson-octet (scalar since J = 0, pseudo since P = —1):

[=1 m=496MeV

I =1, m=137TMeV
(da) ) I =0, m see below

K

(mass differences due to mass of strange quark)

— pseudoscalar meson-singlet: ¥, with I =Y = 0.

e [t’s slightly more complicated. ..

— Consider all 3 states with I3 =Y = 0:

* 70 is the I3 = 0 state of the isospin-triplet, i.e. 7° =

% 1y is the SU(3)-singlet state, i.e. ¢ = \/Lg(uﬂ + dd +
% 1bg is the SU(3)-octet, isospin-singlet state.

orthogonal to both 7° and ¥y, 13 = \/ié(ua + dd — 253).

(uu — dd).
).

& &l“

— 1)1 and 1)g have the same quantum numbers (/ = 0 and JX¢ =0~1).

« If it was only for the strong interaction (QCD) then 1; and s would be
physical states (transforming in different irreps of SU(3)).

* Due to the electro-weak force these states can mix.

n(548 MeV') = 1hgcos — 1)y sin 6
7' (958 MeV') = 1bg sin 6 + 11 cos O

The physical states (particles) are n and 7. # is called nonet mixing angle
(experimentally observed value (7) 6 = —24.6°).

e Furthermore, there are exited gg-states (rotation, vibration etc.)

The first “exited” meson-nonet has quantum numbers B = 0 and J* = 1.
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— vector meson-octet: (quark content as above)

YA

m = 892 MeV

N |[—

I =1, m="T776MeV

I =0, ms.u.

K0 I =3, m=2892MeV

N[

— vector meson-singlet: ¥} with I =Y = 0.
As above 9] and ¥} mix, with 6, = 36° (almost “ideal” mixing):
(1020 MeV) = 4 cos Oy — 1)) sin Oy ~ s5

‘ 1
w(782MeV) = g sin by + 1] cos Oy =~ 7 (uu + dd)

le. M0 gt p= My < M0 ot oo g0 < Mg .
~—~
no s-quark one s-quark two s-quarks

Baryons consist of 3 quarks. Thus, decompose
D®D®D:m®ﬂﬂ®ﬂj®@

or 3R3®3=10P8P8P1.
) L N
S Mg My A

with S = tensors that are totally symmetric under Ss, i.e. under quark exchange,
Mg = tensors with mixed symmetry (symmetric under exchange of the first two

quarks ),

M 4 = tensors with mixed symmetry (anti-symmetric under exchange of the first

two quarks, *),
A = totally anti-symmertic tensors.

« This is different from what we get with Young operators for standard tableaux (sym-
metric under 1 <> 2 and 1 <> 3, resp.), i.e. here we take linear combinations of those

states.

We thus expect multiplets of (almost mass) degenerate baryons, consisting of 1, 8 or

10 particles.
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e Experimentally one finds: The lightest (i.e. ground state) baryons form an octet and
a decuplet:

baryon-octet (B =1, J¥ =
Y,

I=1, m=1193MeV
I=0, m=1116 MeV

m = 1318 MeV

N |—=

A~ A AT AT
=3, m=1232MeV

=1, m=1385MeV

=1 m=1530MeV

I =0, m=1672MeV

e What about the singlet and the second octet?

Baryons are fermions, and thus their total wave function (in space, spin, flavour
and colour) have to be totally anti-symmetric.

Baryons are colour-singlets, i.e. they transform in the trivial rep ﬁ of SU(3)colour,
which is the sgn rep of S3. = The colour part of the wave function is totally
anti-symmetric (under exchange of the quarks).

In the ground state orbital angular momentum is zero, i.e. the spatial part of
the wave function is totally symmetric.

The spin-flavour part has to be totally symmetric.
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— For the spins of the 3 quarks in a baryon we have (Young diagrams for SU(2)spin)
neoeo=(MéeH)eo=tmooneHeH=oneoeD
or

2®2®2:%€B%@% SU(Q)SI)Hl?
S Mg Ma
i.e. we have to combine
(10 EB 8 EB 8 @ 1)ﬂav0ur and (4 EB 2 @ 2)spin .
T [ N L .
S Mg My A S Ms My
— This leads to the following possibilities for (SU(3), SU(2))-multiplets:
S:(10,4), (8,2),
MS : (1072)7 (8’4)’ (8,2), (172)7
Ma : (1072>7 (874)7 (872)7 (172>7
A:(1,4), (8,2).

Here the totally symmetric octet (8,2)g corresponds to the linear combination

1
8,2)s = —[(8, 2) + (8, 2)],
8.2)5 = 5[8.2)+ (3. 2)
Mg Mg My My
and similarly for the other combinations.

— Only the totally symmetric spin-flavour multiplets (10,4) and (8,2) lead to to-
tally symmetric wave function for the baryons.
= In the ground state we have only one octet and the decuplet, but no singlet
and no second octet. (In exited states, however, they can show up.)

e Alternative perspective:

— Each quark lives in 6-dimensional spin-flavour space (3 colours, 2 spin projec-
tions).
~ approximate SU(6) spin-flavour symmetry.
— Decomposition into SU(6)-irreps:
6®6®6=>565®70p, @70, D20y4.

— The 56-dimensional irrep of SU(6) induces a rep of SU(3)gavour- The latter is
reducible and we find
565 = 102 @ 82 .
a N
dim = 10 - 4 dim = 8- 2

This corresponds to the baryon-decuplet (spin 2) and to the baryon-octet (spin ).

126



8.5 Gell-Mann-Okubo formula

e Within an SU(3)gayou-multiplet masses of particles within the same isospin-multiplet
are almost identical, but for different Y (or S) mass differences can be larger.
Reason: m, = mg < ms; = SU(3)gayour 1S broken to SU(2); x U(1)y.

e Assumption: The SU(3)-breaking term is a small perturbation,
H=Hy+ H',

with Hy invariant under SU(3)gayour
H' only invariant under SU(2); x U(1)y

e In Problem 49 we show using perturbation theory:

— H’ transforms like the 1g-state of the octet rep of SU(3) (cf. Section 8.4).

— For the masses of baryons within a multiplet one finds the Gell-Mann-Okubo
formula

m=a+0bY +c(I(I+1)—1v?)

with a,b, ¢ constant within a multiplets. (In in Problem 49 we restrict our
attention to rectangular Young diagram, in particular the decuplet; then there
is no c.)

e This formula predicted the mass (of the then unknown) Q™ -particle, which was found
a few years later with a mass within less than 1% of the prediction.
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6 Lie groups (continued)

6.11 Roots and weights

Remark: Additive quantum numbers (examples: J3 (spin), I3 (isospin), Y hypercharge)

How did we draw the diagrams for the hadron multiplets in Section 8.47 We added that
I3- and Y-values for the quarks contributing to a hadron. This was justified because these
values are eigenvalues of the two commuting generators. . .

Let G be a Lie group with Lie algebra g, let I'' and I'? be reps of G with corresponding
reps dI'? of g. Consider I' = I'" ® I'2. Then

dD(X) =dI'(X) @ 1 + 1 ® dI*(X)

since
1d . 1d . .
ID(X) = = —T'(eiXt — — (T (Xt (e Xt)2
dr(X) 1dt () t=0 1dt ( () ®T(e™) ) t=0
1 1 . 0 1 : 1 o .
= - LFI(CIXt) ® F2<O1Xt> + = FI<O1X1‘,> ® LFZ(CIXT)
i \dt t=0 1 dt t=0

=dI'(X) @ T?(e) + I'(e) ® dI*(X).
If 1) and ¢ are eigenvectors of dI'(X) and dI'?(X), respectively, say
dAr'(X)y =My,  dI*(X)p = pep,

then
dl(X)p@p=A+p) .

(Same for (Young-)symmetrised tensor products, i.e. for linear combinations of tensor
products with permuted factors.)

Recall: Representation theory of SU(2),
cf. Section 6.8 — where we actually started with SO(3),

generators / basis for su(2): (s; = 1o, with the Pauli matrices o)

C1/01 C1(0 —i 11 0
51_2 107 82_2 i 0 ) 83_2 0_17

with [s;, sg] =D, i¢jkese. Define

. 1/0 1 . 1/0 0
s+:sl+152:§ 00/ 5,251—15225 1 0/

and conclude that
[s3,84] = £s4, [s4,8_] =2s3.
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Consider a rep, dI'(s,) =: J,, with
J3lm) = m|m) .
Then
Jgji’m> = (JiJg + [Jg, Ji])\m> = (Jim + Ji)\m> = (m + 1)Ji|m)

The numbers m are called weights, and with J. we can raise and lower the weights if
Jx|lm) # 0. If T is an irrep, then it is finite-dimensional, and then there has to be a highest
(and lowest) weight, s.t. when we apply J; (J_) it vanishes. This essentially fixed the
representation theory of SU(2).

Continue with SU(3),

generators / basis for su(3): X; = £\; with the Gell-Mann matrices
001 00 —i
A = for k=1,2,3, M=10 0 0], X=[(00 0],
1 00 i 0 0
000 00 O 1 (100
=00 1), X=[00 =), X=—41]01 0
010 0 i 0 V3 00 -2

X1, X, X3 generate an SU(2) subgroup — and so do Xy, X5, 3(V3Xs+X;) as well as
Xe, X7, %(\/ng—Xg). Consequently we define
L= X, +iXy, Uy=Xg+iXs, Vo= X,+iXs,
I3 = X3 and keep Xg.

In physics one rather defines Y = %X& for historical reasons. Then

s, I] = £, I3, Us] = F5Us I3, Vi] = £5V4,
[X87 I:t] = O’ [X87 Ui] = :l:\/TgU:l: ; [X87 Vﬂ:] - j:\/Tng: .

For a rep I' choose basis vectors as simultaneous eigenvectors of dI'(X3) and dI'(Xs), say
dF(Ig)|Z3, ZL’8> = iglig, I8> s dP(X8)|23, ZL'8> = I8|i3, ZE8> .

By a slight abuse of notation we omit dI" in the following, i.e.

I3ig, xg) = islis, xs) , Xglis, x8) = wsliz, g) .
Now
I3l |ig, g) = (i3 £ 1)1 i3, x3) Xgl.|ig, wg) = wglyilis, xg) ,
I3Uis, as) = (i3 F 3)Uxlis, xs) , XgUzis, x8) = (v £ %)Uih?ﬂ g)
IVilig, as) = (i3 £ 5)Valis, s), XgVilis, wg) = (ws £ \/75)‘/1\2'37 g) .
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Now call the pairs (i3,z5) =: m weight vectors or simply weights (in our diagrams for
hadron multiplets we indicated the positions of their tips as dots).

By applying reps of I, Uy and Vi we can shift the weights by

621 - (1,0), 0_22 - (—1,0)
_)3 = <_%a \/Tg)v 0_24 = (%7 _\/75)
0_25:(%7\/75)7 0_26: (_57_73>7

respectively. The vectors &; are called root vectors or simply roots. We collect them in a
root diagram:

o%l
Q
ot

We call roots positive (negative), if their first component is positive (negative); same
for weights. (If there was a root with vanishing first component, we would call it posi-
tive /negative according to the sign of the second component.) Hence &, d, and as are
positive.

Since irreps are finite-dimensional, there can be only finitely many weights for an irrep.
Therefore, there has to be a highest (lowest) weight, which cannot be raised (lowered) by
adding positive (negative) roots.

The adjoint rep: another route to roots. In the adjoint rep (rep of the Lie group on
its own Lie algebra) we label can label also the basis vectors by generators,

ade Xk = [X],Xk]
~—~— 1 S——
dr(x;) |...) [.-)

(Since we write generators as matrices, the bracket on the r.h.s. is a matrix commutator.)
Now
adp, I3 = [I3,I3] = 0, adx I3 = [Xs,I3) =0,

i.e. the weight vector for the basis vector corresponding to I3 is (0,0); similarly the weight
vector corresponding to Xy is also (0,0). Thus, the weight diagram for the adjoint rep of
SU(3) has two points at the origin. Try to raise or lower weights from there, e.g.

adpadr, [s = (I3, I+, I3]) = (I3, 1] = £[14, [3] = *ad;, I3,
adxsadr, I3 = [Xg, [+, [3]] = =[x, [I3, Xg]] — [I3, [ X3, I£]]
T —— S——

Jacobi id. =0 =0
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i.e. applying I; changes the weight by (£1,0) — of course! We have to add the root vector
a2, as for any other rep (if the result is non-zero); similarly for Uy and Vy. This already
yields a weight diagram with eight (the dimension of su(3)) points, i.e. repeated attempts
to raise or lower weights have to yield zero in the adjoint rep if the corresponding root
vector would lead to a new point.

e[S

We can also verify explicitly that repeated application of the same raising or lowering
operator to (0,0) always yields zero,

adp,adp, Iy = [Iy, 14, I3]] = (I, F14] =0,

same if we replace I3 by Xg and/or IL by Uy/V..
The weight diagram of the defining rep is fixed by the diagonal elements of I3 and Xg.

A

< defining rep

complex conjugate
of defining rep

For the complex conjugate of the defining rep we have to consider
oiX — efif — oi=X)
ie. X — —X; for our basis we have X 3465 — —Xi1346s and Xo57 — Xs57, and in

particular (I3, Xg) — (—1I3, —X3), which fixes the weight diagram.
Point out highest/lowest weights in all weight diagrams.
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6.12 From roots to the classification of semi-simple Lie algebras

Definition: (simple Lie group/algebra)

A Lie group G is called simple if it is connected, non-abelian, and has no nontrivial normal
Lie subgroups. A Lie algebra g is called simple if it is non-abelian and has no non-trivial
ideals.

Remarks:
1. The Lie algebra of a simple Lie group is simple.
2. If g is a simple Lie algebra then dimg > 2.

Definition: (semi-simple Lie algebra)
A Lie algebra g is called semi-simple if it is a direct sum of simple Lie algebras.

Remarks:
1. The Killing form of a semi-simple Lie algebra is non-degenerate.

2. Every Lie algebra is a semi-direct sum of something (its radical, i.e. its maximal
solvable ideal — whatever that is) and a semi-simple Lie algebra.

The semi-simple Lie algebras can be classified completely in terms of their root systems.
In this final lecture I can only give a brief sketch of how this comes about.

Definition: A Cartan subalgebra of § of a semi-simple Lie algebra g is a maximal commu-
tative subalgebra b with ady diagonalisable V H € h; dim b is called the rank of g. The rank
is the maximal number of linearly independent, commuting, diagonalisable generators.

Weights
e Let GG be a Lie group with Lie algebra g.

e Let Hy,...,H,; be a basis for  (i.e. £ is the rank of (), hence
[H;, H] =0 Yjik=1.. 0.

The H; are called Cartan generators; they are simultaneously diagonalisable.

The eigenvalues m; of H; to a joint eigenvector are collected in a weight (vector)
m= (ml,...,mg).

The weights for a fixed irrep are collected in a weight diagram (with possible degenera-
cies, cf. the SU(3)-octet). The number of weights in weight diagram is the dimension
of the irrep. We can label basis vectors of irreducible subspaces by weights: |\, m).

For SU(N) the generators are traceless (same for SO(N)).
= The sum of all weights in a weight diagram is 0 (for SU(/N) or SO(N)).

A weight is called positive (negative) if its first non-vanishing component is positive
(negative).
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e Example: SU(3), cf. Section 6.11
— generators Xq,..., Xg

— commuting (Cartan) generators: X3, X (rank 2)

— fundamental weights: (weight vectors of the defining rep)

mlz(%7ﬁ§)v mQZ(_%7ﬁ§)J

—

ms =

<07 _\/Lg) )

notice: My 4 Mg + 13 = 0 (see Section 6.11 for the weight diagram)

¢ Relation to Young diagrams:

SU(N) has rank N—1. For the irrep I'* with Young diagram ©, the weight diagram

can be constructed as follows:

— Label the boxes of ©) by j = 1,...,n (i.e. let n be the number of boxes of ©,).

— Consider all ways in which we can write numbers ¢; = 1,..., N into the boxes

of ©,, s.t. (cf. Section 7.2.5)

* numbers within rows are non-decreasing, and
* numbers within columns are increasing.

— The weight vectors are then given by

n

—»A . N

leln - E mij
J=1

with the fundamental weights 773;; (cf. the remark on additive quantum numbers

at the beginning of Section 6.11).

Example: SU(3)-octet, i.e. ©) = |

— 8 possibilities

1[1] [1]2] [1[3] [1]1] [1][2] [2]2] [1[3] [2]3]
20 20 2 B3 B B B B
— corresponding weight vectors and weight diagram
Mo = 1ty + 1y + 1iip = %,73) T8
Migs = 11 + 1ia + e = (— ,73) \/T§

Misg = my + mg + Mg =
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Roots

e Let g be an n-dimensional semi-simple Lie algebra of rank /.

e Recall (from Section 6.11) that in the adjoint rep we label both, reps of generators
as well as basis vectors by generators,

ade Xk = [X],Xk] s

~—~ T ——

dr(X;) |...) l-)
for which we no introduce the shorthand notation

Xj| Xe) = [[X;, Xi]) -

e Basis states corresponding to Cartan generators have weight zero,

H;|Hy) = |[Hj, H]) = 0.

e The remaining n — ¢ basis states we call |Es), labelled by their non-zero weights &
(non-zero since [H;, Eg] # 0 for at least one j). The |Es) can always be chosen as
simultaneous eigenstates of the Cartan generators (without proof),

Hj|Eg) = | Eg) & [Hj, Es] = ajEs. (¥

So far I concealed that we actually have to consider complex/complexified Lie algebras
in this whole discussion, but recall (Section 6.11) that for SU(2) and SU(3) the raising
and lowering operators were complex linear combinations of generators.

Now (%) implies
[H;, EY) = —oy EL,
i.e. we can choose them s.t.

El=F +.  (+)

[0

e The n — ¢ vectors @ = (o, ..., qy) are called root vectors or roots, i.e. the roots are
the non-trivial weights of the adjoint rep.

— Due to (+) the number of roots is always even.

— One can show that the roots are non-degenerate.
e The Ez act as raising/lowering operators,
HjEs|Egz) = (EgH; + [Hj, Eal)|Eg) = (EaB; + o Ez)|Ez) = (B + o) Ea|Ep)

i.e.
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(i) EalEj) is proportional to |Ej, z) if &4—? is also a root,
v, E/5] is proportional to £ 3 if @+ is also a root,
(i)

[Ea
[Es, E_z] is a linear combination of the H;
(iii) [Ea, Bzl =0if d+43 is neither 0 nor a root.

In particular, if @ is a root then 2@ cannot be a root (since [Egz, Ez] = 0).

Now one considers the Jacobi identity for Eg, E_gz, E,, 8 and ... after calculating
along for while ... one finds the condition
(@p) v

and one can show that the generators can be chosen s.t.
tr(H;Hy) = 6;,  tr(EgE_g) = tr(EgEL) = 1.

Interchanging the roles of @ and 5 , one, of course, also finds

\_/l

(Ciﬁ:ﬁ for some p € Z.
(8,8) 2
Together the two conditions imply
- = = 2\2
(CE’%)*H and 00529:%:%,
(8,8) ¥ (@ a)(5,8) 4
where 6 is the angle between @ and 5 For 0 < 6 < 90° there are only four solu-
tions to the second equation: 30°, 45°, 60°, 90° (i.e. , T, 5, ). The first condition

fixes the corresponding length ratios, and together with some more symmetry con-
ditions/restrictions this makes possible a complete classification of root systems and
thus of semi-simple Lie algebras.
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