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de Broglie-Bohm, delayed-choice double-slit
experiment, and density matrix

I will try to interest you in the de Broglie'- Bohm? version of non-
relativistic quantum mechanics. It is, in my opinion, very instructive. It is
experimentally equivalent to the usual version insofar as the latter is
unambiguous. But it does not require, in its very formulation, a vague
division of the world into ‘system’ and ‘apparatus,” nor of history into
‘measurement’ and ‘nonmeasurement.’ So it applies to the world at large,
and not just to idealized laboratory procedures. Indeed the de Broglie—
Bohm theory is sharp where the usual one is fuzzy, and general where the
usual one is special. This is not a systematic exposition®, but only an
illustration of the ideas with a particularly nice example, and then some
remarks on the role of the density matrix — in tribute to the title of this
conference.

No one more eloquently than John A. Wheeler* has presented the
delayed-choice double slit experiment. A pulsed particle source S (see
Fig. 1) is so feeble that not more than one particle is emitted per pulse.
The associated wave pulse B falls on a screen with slits 1 and 2. The

Fig. 1. A de Broglie wave pulse B from a partlcle source S traverses a

screen with slits 1 and 2. The waves B’ emerging from the slits are

focussed by lenses on particle counters C, and C,. A photographlc plate
P may or may not be pushed into the interference region.
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112 Speakable and unspeakable in quantum mechanics

transmitted pulses B’ are focussed by off-centred lenses into intersecting
plane wave trains which fall finally on particle counters C, and C, — unless
a photographic plate P is pushed into the region where the two wave
trains interpenetrate. The decision, to interpose the plate or not, is made
only after the pulse has passed the slits. As a result of this choice the
particle either falls on one of the two counters, indicating passage through
one of the two slits, or contributes one of the spots on the photographic
plate building an interference pattern after many repetitions. Sometimes
the interference pattern is held to imply ‘passage of the particle through
both slits’ — in some sense. Here it seems possible to choose, later, whether
the particle, earlier, passed through one slit or two! Perhaps it is better
not to think about it. ‘No phenomenon is a phenomenon until it is an
observed phenomenon.’

Consider now the de Broglie-Bohm version. To the question ‘wave or
particle? they answer ‘wave and particle’ The wave y(t,r) is that of wave
mechanics — but conceived, in the tradition of Maxwell and Einstein, as
an objective field, and not just as some ‘ghost wave’ of information (of
some presumably well-informed observer?). The particle rides along on
the wave at some position x(t) with velocity.

10
(t) =~ Tmlog (¢, 7)., (1)
This equation has the property that a probability distribution for x at
time ¢

x|y (t,x)|?
evolves into a distribution
x|y (', x)|?

at time t'. It is assumed that the particles are so delivered initially by the
source, and then the familiar probability distribution of wave mechanics
holds automatically at later times. Note that the only use of probability
here is, as in classical statistical mechanics, to take account of uncertainty
in initial conditions.

In this picture the wave always goes through both slits (as 1s the nature
of waves) and the particle goes through only one (as is the nature of
particles). But the particle is guided by the wave toward places where ||
is large, and away from places where ||? is small. And so if the plate is in
position the particle contributes a spot to the interference pattern on the
plate, or if the plate is absent the particle proceeds to one of the counters. In
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neither case is the earlier motion, of either particle or wave, affected by the
later insertion or noninsertion of the plate. Clearly the particle pursues a
bent path in the region where the wave trains interpenetrate’. Itis vital here
to put away the classical prejudice that a particle moves on a straight path
in ‘field-free’ space — free, that is, from fields other than the de Broglie-
Bohm! Indeed (in the absence of the plate) a particle passing through slit 1
falls finally not on counter C, but on C,, and vice versa! It is clear just by
symmetry that on the symmetry plane the perpendicular component of X
vanishes. The particle does not cross this plane. The naive classical picture
has the particle, arriving on a given counter, going through the wrong slit.

Suppose next that detectors are added to the setup just behind slits 1
and 2 to register the passage of the particles. If we wish to follow the
story after these detectors have or have not registered we cannot pretend
that they are passive external devices (as we did for screen and lenses).
They have to be included in the system. Consider then an initial
wavefunction

¥(0)=y(0,)D0,r;,..)D3(0,r5,...)

where D¢ and DY are many-body wavefunctions for undischarged
counters. Solution of the many-body Schrodinger equation yields a

wavefunction
on

Y(0)=".(0)+ Y1)

¥,i(t) =¥, (0Dt Ty, )D3(E s, )}
)

W, (t) = ¥, (t, 1)DI(t, ¥y, ... )D5(t, 1, . .. (2)

where the s are the two plane wave trains and the D's are wavefunctions
for discharged counters. Let us suppose that a discharged counter pops
up a flag saying ‘yes’ just to emphasize that it is a macroscopically different
thing from an undischarged counter, in a very different region of

confi mlratmn space.

The many-particle generalization of (1) gives for the particle of particular
interest

10 o
X(t) = _i‘;l-a_l'lm log‘l’(t, ILI,T,.. ) £, =X, (1), etc. (3)

ry = X,(1), etc.

~F LL nnﬂarol

Evaluation of this u:quuca, in glncraa, speciuca y )
also of the positions of all other particles. However, in the simple case of (2)
the positions of other particles are sufficiently specified by ‘detector 1
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discharged’ or ‘detector 2 has discharged.’ The configurations so described
are so different (grossly, macroscopically, so) that then only either ¥, or
¥, is significantly different from zero. Moreover, since for either ¥, or
W, the variable r appears only in the factor Y, or y,, the complicated
formula (3) reduces to the simple formula (1):

. 10
X=;&Im10gd/1(t,X)=V1

or

X =—r}1~£— Imlogy,(t,x)=v,
where v, and v, are velocities associated with the two plane wave trains.

This reduction from ¥, and ¥, to ¥, or ¥,, on partial (macroscopic)
specification of the configuration to be considered, illustrates the ‘reduction
of the wavefunction’ in the de Broglie-Bohm picture. It is a purely theore-
tical operation and one need not ask just when it happens and how long it
takes. The theorist does it when he finds it convenient.

The further reduction from ¥, or ¥, to ¥, or ¥, is a reduction from
many particles to a few (one in this case). It illustrates how with a partial
specification of the world at large it becomes possible in practice to deal
with- a small quantum system — although in principle the correct
application of the theory is to the world as a whole. We made such a
reduction of the system tacitly in the beginning when we said that certain
screens and lenses, etc., were in position, but did not include them or the
world at large in the quantum system. Note that in the de Broglie-Bohm
scheme this singling out of a ‘system’ is a practical thing defined by
circumstances, and is not already in the fundamental formulation of the
theory.

Consider now the density matrix. When it is specified that counter 1
(say) has discharged, the conventional one-particle density matrix (with
disregard of trivial normalization factors) is - s

p(%,x) =Y, (xW1(x)

and the velocity X, = v, is given equally by (1) or

X, = tlr;ilm { [p(x,x)]™" a%ﬂ(x, X')} (4)

X

But this is a rather trivial case. When it is not specified which counter
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has discharged the conventional density matrix is
p(x,x")= jd3xld3x2...‘P(x,xl,xz,...)‘P*(x’,xl,xz...)

=Y (YT (X) + ¥2(x)P3(x)

I do not see how to recover from this the fact that we have (nearly
always) velocity either v, or v,. Naive application of (4) gives something

lan Q. 2on Ax Den~alia
else. So in the de Broglie-Bohm theory a fundamental significance is given

to the wavefunction, and it cannot be transferred to the density matrix.
This is here illustrated for the one-particle density matrix, but it equally
so for the world density matrix if a probability distribution over world
wavefunctions is considered. Of course the density matrix retains all its
usual practical utility in connection with quantum statistics.

That the above treatment of the detectors was greatly oversimplified
does not affect the main points made. Real detectors would respond in a
variety of ways to particles traversing in a variety of ways. Not only would
¥, and y, become incoherent, but each would be replaced by many
incoherent parts.

That the theory is supposed to apply fundamentally to the world as
a whole requires ultimately that any ‘observers’ be included in the system.
This raises no particular problem so long as they are conceived as not
essentially different from computers, equipped perhaps with ‘random’
number generators. Then everything is in fact predetermined at the
fundamental level — including the ‘late’ decision whether to insert the plate.
To include creatures with genuine free will would require some develop-
ment, and here the de Broglie-Bohm version might develop differently
from the usual approach. To make the issue experimental would require
identification of situations in which the differences betweeen computers
and free agents were essential.

That the guiding wave, in the general case, propagates not in ordinary
three-space but in a multidimensional-configuration space is the origin of
the notorious ‘nonlocality’ of quantum mechanics®. It is a merit of the de
Broglie-Bohm version to bring this out so explicitly that it cannot be
ignored.®
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