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Are there quantum jumps?

If we have to go on with these damned quantum jumps, then I'm sorry that I
ever got involved. E. Schrodinger

1 Introduction

I have borrowed the title of a characteristic paper by Schrodinger
(Schrodinger, 1952). In it he contrasts the smooth evolution of the
Schrodinger wavefunction with the erratic behaviour of the picture by
which the wavefunction is usually supplemented, or ‘interpreted’, in the
minds of most physicists. He objects in particular to the notion of
‘stationary states’, and above all to ‘quantum jumping’ between those
states. He regards these concepts as hangovers from the old Bohr quantum
theory, of 1913, and entirely unmotivated by anything in the mathematics
of the new theory of 1926. He would like to regard the wavefunction itself as
the complete picture, and completely determined by the Schrodinger
equation, and so evolving smoothly without ‘quantum jumps’. Nor would
he have ‘particles’ in the picture. At an early stage, he had tried to replace
‘particles’ by wavepackets (Schrodinger, 1926). But wavepackets diffuse.
And the paper of 1952 ends, rather lamely, with the admission that
Schrodinger does not see how, for the present, to account for particle tracks
in track chambers... nor, more generally, for the definiteness, the parti-
cularity, of the world of experience, as compared with the indefiniteness, the
waviness, of the wavefunction. It is the problem that he had had
(Schrodinger, 1935a) with his cat. He thought that she could not be both
dead and alive. But the wavefunction showed no such commitment,
superposing the possibilities. Either the wavefunction, as given by the
Schrodinger equation, is not everything, or it is not right.

Of these two possibilities, that the wavefunction is not everything, or not
right, the first is developed especially in the de Broglie-Bohm ‘pilot wave’
picture. Absurdly, such theories are known as ‘hidden variable’ theories.
Absurdly, for there it is not in the wavefunction that one finds an image of
the visible world, and the results of experiments, but in the complementary

hidAan N hla
‘hidden ) variables. Of course the extra variables are not confined to the

visible ‘macroscopic’ scale. For no sharp definition of such a scale could be
made. The ‘microscopic’ aspect of the complementary variables is indeed
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hidden from us. But to admit things not visible to the gross creatures that
we are is, in my opinion, to show a decent humility, and not just a
lamentable addiction to metaphysics. In any case, the most hidden of all
variables, in the pilot wave picture, is the wavefunction, which manifests
itself to us only by its influence on the complementary variables.

If, with Schrodinger, we reject extra variables, then we must allow that his
equation is not always right. I do not know that he contemplated this
conclusion, but it seems to me inescapable. Anyway it is the line that I will
follow here. The idea of a small change in the mathematics of the
wavefunction, one that would little affect small systems, but would become
important in large systems, like cats and other scientific instruments, has
often been entertained. It seems to me that a recent idea (Ghirardi, Rimini
and Weber, 1985), a specific form of spontaneous wavefunction collapse, is
particularly simple and effective. I will present it below. Then I will consider
what light it throws on another of Schrodinger’s preoccupations. He was
one of those who reacted most vigorously (Schrodinger, 19354, b, 1936) to
the famous paper of Einstein, Podolsky and Rosen (1935). As regards what
he called ‘quantum pntanolpmpnt and the resulting EPR correlations, he
‘would not call that one but rather the characteristic trait of quantum

mechanics, the one that enforces its entire departure from classical lines of
thought’.

2 Ghirardi, Rimini and Weber

The proposal of Ghirardi, Rimini and Weber, is formulated for non-
relativistic Schrodinger quantum mechanics. The idea is that while a
wavefunction

W(tal'hl'z,---,l'u) (1)

normally evolves according to the Schrodinger equation, from time to time
it makes a jump. Yes, a jump! But we will see that these GRW jumps have
little to do with those to which Schrodmger ob_;ected so strongly. The only
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where N is the number of arguments r in the wavefunction, and 1 is a new
constant of nature. The jump is to a ‘reduced’ or ‘collapsed’ wavefunction
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where r, is randomly chosen from the arguments r. The jump factor j is
normalized:

J.d3 x|j(x)|* = 1. 4)

Ghirardi, Rimini and Weber suggest a Gaussian:
j(x) = K exp(—x*/2a%) ()

where a is again a new constant of nature. R is a renormalization factor:
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Finally the collapse centre x is randomly chosen with probability
distribution

d3x|R,(x)]%. (7

For the new constants of nature, GRW suggest as orders of magnitude
12 10'%s = 10® year (8)

a~10"3cm. 9)

Animmediate objection to the GRW spontaneous wavefunction collapse
is that it does not respect the symmetry or antisymmetry required for
‘identical particles’. But this will be taken care of when the idea is developed
in the field theory context, with the GRW reduction applied to ‘ield
variables’ rather than ‘particle positions’. I do not see why that should not
be possible, although novel renormalization problems may arise.

There is no problem in dealing with ‘spin’. The wavefunctions  and § in
(3) can be supposed to carry suppressed spin indices.

Consider now the wavefunction

sy --sp)x(ry - Tap)s (10)

where L is not very big and M is very very big. The first factor, ¢, might
represent a small system, for exampie an atom or molecule, that is
temporarily isolated from the rest of the world ... the latter, or part of it,
represented by the second factor, . The GRW process for the complete
wavefunction implies independent GRW processes for the two factors.
From (8) we can forget about GRW processes in the small system. But in the
big system, with M of order say 10%° or larger, the mean lifetime before a
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GRW jump is some
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or less.
Consider next a wavefunction like
Dy(Sy S (ry - Tpg) + DSy - Sp)xa(ry -+ Tay). (12)

This might represent the aftermath of a ‘quantum measurement’ situation.
Some ‘property’ of the small system has been ‘measured’ by interaction with
a large ‘instrument’, which is thrown as a result into one or other of the
states y, or x,, corresponding to different pointer readings. This macro-
scopic difference between x, and x, imples that, for very many argumentsr,
multiplication of the wavefunction by j(x —r) will reduce to zero one or
other of the terms in (12). Thus in a time of order (11) one of the terms will

dlsappear, and Only the other will nronagate. The wavefunction commits
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itself very quickly to one pointer reading or the other. Moreover, the
probability that one term rather than the other survives is proportional to
the fraction of the total norm which it carries — in agreement with the rule of
pragmatic quantum theory.

Quite generally any embarrassing macroscopic ambiguity in the usual
theory is only momentary in the GRW theory. The cat is not both dead and
alive for more than a split second. One could worry perhaps if the GRW
process does not go too far. In the usual pragmatic theory the ‘reduction’ or
‘collapse’ of the wavefunction 1s an operation performed by the theorist at
some time convenient for her. Usually she will delay this till the Schrodinger
equation has established a very big difference between y, and x,. The GRW
process is one of nature, and comes about as soon as the difference between
x1 and x, is big enough. I think that with suitable values of the natural
constants (8,9) the GRW theory will nevertheless agree with the pragmatic

theory in practice. But studies on models would be useful to build up
confidence in this.

3 Quantum entanglement

There is nothing in this theory but the wavefunction. It is in the
wavefunction that we must find an image of the physical world, and in
particular of the arrangement of things in ordinary three-dimensional
space. But the wavefunction as a whole lives in a much bigger space, of 3N-
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of the wavefunction at a point in ordinary space. It has neither amplitude
nor phase nor anything else until a multitude of points in ordinary three-
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space are specified. However, the GRW jumps (which are part of the
wavefunction, not something else) are well localized in ordinary space.
Indeed each is centred on a particular specetime point (X,t). So we can
propose these events as the basis of the ‘local beables’ of the theory. These
are the mathematical counterparts in the theory to real events at definite
places and times in the real world (as distinct from the many purely
mathematical constructions that occur in the working out of physical
theories, as distinct from things which may be real but not localized, and as
distinct from the ‘observables’ of other formulations of quantum mech-
anics, for which we have no use here). A piece of matter then is a galaxy of
such events. As a schematic psychophysical parallelism we can suppose that
our personal experience is more or less directly of events in particular pieces
of matter, our brains, which events are in turn correlated with events in our
bodies as a whole, and they in turn with events in the outer world.

In this paper we will use the notion of localization of events only in a
rough way. We will localize them in one or other of two widely separated
regions of space which we suppose to be occupied by two widely separated
systems.

Let the arguments s and r in (12) refer to the two sides, respectively, in an
Einstein—Podolsky—Rosen—Bohm setup, with L as well as M now large. A
source, which for simplicity we omit from the analysis, emits a pair of spin
— 1 neutrons in the singlet spin state. They move through Stern—Gerlach
magnets to counters which register for each neutron whether it has been
deflected ‘up’ or ‘down’ in the corresponding magnet. According to the
Schrodinger equation the wavefunction would come out like (12), with ¢,
or ¢, corresponding to ‘up’ or ‘down’ on the left, and y, or x, corresponding
to ‘down’ or ‘up’ on the right. Suppose that the left hand counters are closer
to the source, and so register before the right hand ones. That is to say,
suppose that ¢, differs macroscopically from ¢, before x, from x,. Then the
GRW jumps on the left quickly reduce the wavefunction to one or other of
the two terms in (12). The choice between g, and x,, as well as between ¢,
and ¢,, has then been made. The jumps on the left are decisive, and those on
the right have no opportunity to be so.

In all this the GRW account is very close to that of a common way of
presenting conventional quantum mechanics, with ‘measurement’ causin
‘wavefunction collapse’ —and with a ‘measurement’ somewhere causing
‘collapse’ everywhere. Butitisimportant thatin the GRW theoryeverything,
including ‘measurement’, goes according to the mathematical equations of
the theory. Those equations are not disregarded from time to time on the
basic of supplementary, imprecise, verbal, prescriptions.

a9
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In this EPR B situation, an ‘up’ on the left implies a subsequent ‘down’ on
the right, and vice versa. Now of course it was not the existence of
correlations between distant events that scandalized EPR, and led Einstein
(Einstein, 1949) to use the word ‘paradox’ in this connection. Such
correlations are common in daily life. If I find that I have brought only one

glove, the left handed, then I confidently predict that the one at home will be
found to be right handed. In the everyday conception of things there is no
puzzle here. Both gloves have been there all morning, and each has been
right or left handed all the time. Observation of the one taken from my
pocket gives information about, but does not influence, the one left at home.
As regards EPRB correlations, what is disturbing about quantum mech-
anics, especially as sharpened by GRW, is that before the first ‘measure-
ment’ there is nothing but the quantum mechanical wavefunction — entirely
neutral between the two possibilities. The decision between these possi-
bilities is made for both of the mutually distant systems only by the first
‘measurement’ on one of them. There is no question, if there was nothing but
the wavefunction, of just revealing a decision already taken. It was this
‘spooky action at a distance’, the immediate determining of events in a
distant system by events in a near system, that scandalized EPR. They
concluded that quantum mechanics must, at best, be incomplete. There
must be in nature additional variables, not yet known to quantum
mechanics, in both systems, which determine in advance the results of
experiments, and which happen to have become correlated at the source —
just as gloves happen to be sold in matching pairs.

It is now very difficult to maintain this hope, that local causality might
be restored to quantum mechanics by the addition of complementary
variables. The perfect correlations actually considered by EPR, with
parallel polarizers in the EPRB setup, do not present any difficulty in this
respect. But the imperfect correlations implied by quantum mechanics, for
misaligned polarizers, prove more intractable (e.g. Bell, 1981).

The GRW theory does not add variables. But by adding mathematical
precision to the jumps in the wavefuction, it seems simply to make precise
the action at a distance of ordinary quantum mechanics. The most
disturbing aspect of this is the apparent difficulty of reconciling it with

Lorentz invariance. Forin a Lorentz invariant theory we tend to think that
‘nothing goes faster than light’. So we turn now to a discussion of Lorentz

1112 D 2OV A 28322 2ipyRit . >wraaa aavs bW &% was uu.l A4 L

invariance.

4 Relative time translation invariance

Of course we cannot discuss full Lorentz invariance in the context of the
nonrelativistic model presented above. But there is a residue, or at least an
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analogue, of Lorentz invariance, which can be discussed in the case of two
widely separated systems. Consider the Lorentz transformation

Z=y(z—uvt), t'=y(t—ruv2) (13)

with x and y unchanged, where the velocity of light has been set equal to

unity, and
1
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ase of a system at a large distance, a, from the origin, it is convenient
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z—2z+a. (15)

Then (13) becomes
Z=—a+y(z+a—ut), t'=yt—uv(z+a). (16)
Taking v very small and a very large so that

va=k (17)
(16) becomes
Z=z t=t—k (18)

In the case of a single system this tells us simply to expect invariance with
respect to translation in time. But in the case of two systems displaced from
the origin in opposite directions, and so with different signs for k, it tells us
to expect invariance with respect to displacement in relative time.
Multiple time formalism, with independent times for different particles,
or for different points in space, is an old story in relativistic quantum theory.
It is less familiar in the context of the nonrelativistic theory. However, it is
easily implemented in the case of noninteracting systems at the level of the
Schrodinger equation. Let two noninteracting subsystems have separate
Hamiltonians 4 and B, respectively, so that the total Hamiltonian is

H=A+B. (19)

Then from the ordinary one-time wavefunction ¥(t, . ..) we can define a two-
time wavefunction

.- i(th— t')A exp i(th— ALV 20

Since 4 and B commute, the relative order of the two exponentials in (20) is
unimportant. (However, if A and B are time-dependent, the two exponent-
ials must separately be time ordered, as in (A.5)). The two-time wavefunc-
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tion satisfies the two Schrddinger equations

hid
o VL) = A ) (21)
hid
2 V) =BY(E., ). (22)

These equations are invariant against independent shifts in the origins of
the two time variables (provided any time dependent external fields in A4
and B are shifted appropriately).

It remains to see if this relative time invariance survives the introduction
of the GRW jumps. It does. I did not find a short elegant argument, and
have relegated the clumsy arguments that I did find to an appendix. From
the ordinary one-time wavefunction for time i, a two-time wavefunction can
again be constructed. It incorporates the jumps of subsystem-1 between
times i and i, and those of subsystem-2 between i and i". In terms of this a
formula can be found (A4.22, A.23) for the probability of subsequent jumps
before times f’ and f” in the two subsystems respectively. It can be
interpreted as supplementing (21, 22) by giving the probabilities for jumps
in the two systems as t’ and t” are advanced independently from
independent starting points. It does not depend on ¢’ or t” except through
the two-time wavefunction ¢ (and any time dependent external fields in
Hamiltonians A and B). The relative time translation invariance of the
theory is then manifest.

The reformulation (A.22, A.23) of the theory can also be used to calculate
the statistics of jumps in one system separately, disregarding what happens
in the other. The result (A.24,A.25) makes no reference to the second
system. Events in one system, considered separately, allow no inference
about events in the other, nor about external fields at work in the other,...
nor even about the very existence of the other system. There are no
‘messages’ in one system from the other. The inexplicable correlations of
quantum mechanics do not give rise to signalling between noninteracting
systems. Of course, however, there may be correlations (e.g. those of EPRB)
and if something about the second system is given (e.g. that it is the other
side of an EPRB setup) and something about the overall state (e.g. that it is
the EPRB singlet state) then inferences from events in one system (e.g. ‘yes’
from the ‘up’ counter) to events in the other (e.g. ‘yes’ from the ‘down’
counter) are possible.

§ Conclusion

I think that Schrodinger could hardly have found very compelling the
GRW theory as expounded here — with the arbitrariness of the jump
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function, and the elusiveness of the new physical constants. But he might
have seen in it a hint of something good to come. He would have liked, I
think, that the theory is completely determined by the equations, which do
not have to be talked away from time to time. He would have liked the
complete absence of particles from the theory, and yet the emergence of
‘particle tracks’, and more generally of the ‘particularity’ of the world, on
the macroscopic level. He might not have liked the GRW jumps, but he
would have disliked them less than the old quantum jumps of his time. And
he would not have been at all disturbed by their indeterminism. For as early
as 1922, following his teacher Exner, he was expecting the fundamental
laws to be statistical in character: ‘... once we have discarded our rooted
predilection for absolute Causality, we shall succeed in overcoming the
difficulties. ..’ (Schrodinger, 1957).

For myself, I see the GRW model as a very nice illustration of how
quantum mechanics, to become rational, requires only a change which is
very small (on some measures!). And I am particularly struck by the fact
that the model is as Lorentz invariant as it could be in the nonrelativistic
version. It takes away the ground of my fear that any exact formulation of
quantum mechanics must conflict with fundamental Lorentz invariance.

Appendix
Let
P(f 3 Xops Mgy b - - - X1, 1y, 13 D)X, L AP, dEy L dEy, (A.1)

be the probability that between some time i and some later time f there are
m jumps, with the first at time ¢, in the interval dt,,involving argumentr,,,
and centred at x, in d°x,; and with the second at time ¢, involving
argumentr,_, centred at X,,...and soon. Then, from the basic assumptions,

P=exp AN(i— f)GIE* (f,)E(S, )i), (A.2)

where N is the total ‘particle number’, |i) denotes the initial state

[i> =y, rg,r;...) (A.3)
and
E(f,)=U(f,tn)i(0m Xpm)- - Ult,, ty)j(ng, x,)U(ty,0) (A.4)
with
U(s,t) = Texp r dt’gi%) (A.5)
and ”

j(ns x) = ll/zj(x - l',,). (A6)
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In (A.5) we allow that the Hamiltonian might be time dependent, and so
have a time-ordered product. Note the unitarity relation

UtU =1. (A7)

The leftmost U in (A.4) is actually redundant in (A.2), because of (A.7), but it
is convenient later. The exponential in front of (A.2) arises from a product of
exponentials

exp — AN(t' — 1),

which are the probabilities of having no jumps in the corresponding time
intervals. The formulae could be simplified somewhat by introducing
Heisenberg operators, but we will not do so here.

Let us calculate from (A.1)—(A.4), for given i, the conditional probability
distribution for jumps in the interval i’ till f when the jumps betweeni and i
are given. We have only to divide (A.1) by the probability for the given
jumps:

exp AN(i — i)|R|?d3x,... dt,... (A.8)
with, from (A.2),
|R|> = GIE* (7, E(, )i). (A.9)
The result may be expressed in terms of
E(i,1)|i
vy = ZEBND (A10)

FAN

when we note the factorization property

+ E(f,)=E(f,))E({,)). (A.11)

If we renumber the jumps in the reduced interval after i’ to begin again with
1, we find again just (A.1)—(A.4) with i replaced everywhere by i'. So this was
only a rather elaborate consistency check. But the manipulations involved
will be useful for another purpose in a moment.

Let us now calculate from (A.1)—(A.4), with fixed f, the probability P’ for
jumps specified only up to some earlier time f”, regardless of what happens
later. To do so we have to sum over all possibilities in the interval between
f’ and f. There might be 0, 1, 2,... extra jumps in that remaining interval.
The probability of the given jumps in the reduced interval, and no jumps in
the remainder, is given directly by (A.2), which we rewrite as

Xoexp AN(i — f)GIET(f, DE(S", )li) (A.12)
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with X, =expAN(f' — f). (A.13)

With one extra jump, E* E in the expectation value is replaced by
E*U"|j(n,x)|* UE, (A.14)

where the extra factor U evolves the system from time f” till the time ¢ of the
extra jump (n, x). Integration over x, using (4), replaces |j(n, x)|*> by 4. The
extra U * U then goes away by unitarity. Summation over n gives a factor N,
and integration over time ¢ gives a factor (f — f’). Then the total one extra
jump contribution to P’ is (A.12) with X, replaced by

X, =AN(f — ) expAN(f" —f). (A.15)

Proceeding in this way we find for the n-extra-jump contribution to P’ again
(A.11) but with X, replaced by

1}91‘\{1 r__ VIANY |
X, =" Un' TV exp AN(f' = f). (A.16)

! n

The factor n! arises from the restriction of the multiple time integral to
chronological order. To obtain the total P’ we have to sum these n-extra-
jump contributions over all n. This is easy, for

Y X,=1. (A.17)

The result for P’ is just (A.1)-(A.4) with f replaced by f’. This is only as
expected, but similar manipulations will be useful below.

Suppose now that the system falls into two noninteracting subsystems,
with commuting Hamiltonians 4 and B, respectively:

H=A+B (A.18)
Then the operators U factorize:
u,n)=Vv(E, 0w, (A.19)

with V and W constructed like U in (A.5), but with 4 and B replacing H.
Since V and W commute, we can collect together the factors referring to
each subsystem in (A.2), with the result

P =exp AL(i —f) exp AM(i — f)<i|F*FG*Gli}, (A.20)

where F and G are constructed like E in (A.4) but with operators of the first
and second subsystems, respectively. The integers Land M are the ‘particle
numbers’ of the subsystems:

L+M=N. (A21)
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At this stage the initial and final times i and f are common to the two
subsystems. But by the manipulations described above we can pass from i
and f to later initial times, and earlier final times. Moreover, because the
jump and evolution operators commute with one another, and have been
collected together into separate commuting factors F and G, this can be
done independently for the two subsystems. So we can take independent
initial times i and i”, and independent final times f’ and f”, for the two
subsystems, respectively.

The resulting probability distribution, over jumps in th
intervals, is

1¢]

P s Xy P b - - X1, M, £ £ 803X . 2% dy L d . (A22)
where
P = exp AL(i — f")exp AM(i" — f")<i,'|F*FG*Gli,i"). (A23)

The jumps and evolutions before i’ and ", in the two subsystems,
respectively, have been incorporated into the initial state |#",i” >. The jumps
and evolutions in the reduced intervals, ' till £ and i” till f”, make F and G,
as in (A.4).

Note finally that if we are interested only in what happens in subsystem 1,
we can sum over all possibilities for the second system in a now familiar
way. The resuit is just (A.22), with reference to jumps in system 1 only, and
(A.23) without any operator G. It is equivalent to

P =trace, F*Fp, (A.24)
where the trace is over the state space of system 1, and
p = trace, |7, i" ) {i,i"] (A.25)

with the trace over the state space of system 2.
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