Vorkurs Mathematik

Prof. Dr. P. Pickl

Blatt 2

Aufgabe 1: Es seien a, b sowie c, d kommensurable Strecken mit a : b = c : d. Zeigen Sie, dass für jede Strecke e gilt, dass a + e zu b nicht im Verhältnis c : d steht. Alle Strecken (insbesondere e) haben, wie immer eine Länge ungleich Null.

Benutzen Sie diesmal die Definition für Proportinalität von Eudoxos. Die Annahme, dass a+e kommensurabel zu b soll im Vergleich zu Aufgabe 4 auf Blatt 1 nicht mehr vorausgesetzt werden.

Aufgabe 2: Zeichnen Sie ein allgemeines Mengendiagramm für drei Teilmengen $A, B, C \subset \Omega$ und vergewissern sie sich, dass das Distributivgesetz für Mengen in der Tat Gültigkeit hat:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
.

Vergleichen Sie mit dem aus der Schule bekannten Distributivgesetz der Arithmetik.

Aufgabe 3: Es seien X, Y Teilmengen der gleichen Grundmenge Ω . Schreiben Sie, falls möglich, folgende Mengen mit Hilfe der Mengenoperationen \cap und \cup :

- (a) Die Menge A, die alle Elemente, die in X und Y liegen, enthält.
- (b) Die Menge B, die alle Elemente, die in X liegen, und alle Elemente, die in Y liegen, enthält.
- (c) Die Menge C, die alle Elemente, die in X oder Y liegen, enthält.
- (d) Die Menge D, die alle Elemente, die in X liegen, oder alle Elemente, die in Y liegen, enthält.

Aufgabe 4: Erklären Sie, dass $(A \cap B)^c = A^c \cup B^c$ und $(A \cup B)^c = A^c \cap B^c$

Aufgabe 5: Um welche Menge handelt es sich bei

$$\bigcup_{\varepsilon>0} [\varepsilon,1]$$

Hier steht $[\varepsilon,1]$ für das beidseitig abgeschlossene Intervall von ε bis 1.