Groups and Representations

Homework Assignment 2 (due on 29 October 2025)

Problem 5

Let G be a finite group acting on the set M; for $m \in M$ let $G_m = \{g \in G : gm = m\}$. Show:

- a) For each $m \in M$ the set G_m is a subgroup of G.
- b) If $n \in Gm$ then $G_n \cong G_m$.
- c) $|Gm| \cdot |G_m| = |G|$ (orbit-stabiliser theorem).

Problem 6

Let W be the symmetry group of a cube. (We consider only rotations, no reflections.) Determine |W|, the order of W, by considering the action of W on corners, edges or faces of the cube and applying the orbit-stabiliser theorem.

Problem 7

Let G be a group. For every $g \in G$ conjugation with g is defined by the map $\hat{g}: G \to G$, $x \mapsto gxg^{-1}$. Show:

- a) Conjugation defines an action, $(g, h) \mapsto \hat{g}(h)$, of G on itself.
- b) G is abelian iff every orbit of this action has length one.
- c) The number of elements of a conjugacy class divides |G|.

Problem 8

Let $\varphi: G \to H$ be a group homomorphism with kernel K and image B. Show:

- a) K is a normal subgroup of G.
- b) φ induces an isomorphism $\hat{\varphi}: G/K \to B$.

Problem 9

We denote by $\operatorname{Inn}(G)$ the set of all inner automorphisms of the group G, i.e. the isomorphisms $\varphi: G \to G$ such that there exists an $h \in G$ with $\varphi(g) = hgh^{-1} \ \forall g \in G$. Show that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$, the group of all isomorphisms $G \to G$ (under composition).