Groups and Representations

Homework Assignment 4 (due on 12 November 2025)

Problem 15

Let G be a finite group and $\Gamma: G \to \operatorname{GL}(V)$ a finite dimensional representation. Prove that $|\det \Gamma(g)| = 1 \ \forall g \in G$.

Problem 16

Let G be a finite group, |G| = n. We enumerate the group elements, $G = \{g_j, j = 1 \dots n\}$, denote by m the number of conjugacy classes c (with n_c elements) and by p the number of non-equivalent irreducible representations Γ^i of G (with dimensions d_i).

Consider the matrix U with entries $u_{ja} = \sqrt{\frac{d_{ia}}{n}} \Gamma^{i_a}(g_j)_{\mu_a\nu_a}$ with a triple $a = (i_a, \mu_a, \nu_a)$.

Employ the results of Sections 2.5 and 2.6 in order to solve the following problems.

- a) Determine the dimensions of U and express the orthogonality relation for irreducible representations (Theorem 6) in terms of U.
- b) Show:

(i)
$$\sum_{i \le p} d_i \operatorname{tr} \left(\Gamma^i(g_j) \Gamma^i(g_k)^{\dagger} \right) = n \delta_{jk},$$

(ii)
$$\sum_{g \in c} d_i \Gamma^i(g) = n_c \chi_c^i \mathbb{1}$$
 and

(iii)
$$\sum_{i \le p} n_c \, \chi_c^i \, \overline{\chi_{c'}^i} = n \delta_{cc'}.$$

c) Conclude that m = p.

Problem 17 (Continuation of Problem 13)

We now determine all irreducible representations of D_4 (up to equivalence):

- d) What are the dimensions of the irreducible representations?
- e) Find all one dimensional irreducible representations.

 HINT: First consider irreducible representations of quotient groups, cf. the remarks on (non-)faithful representations in Section 2.1.
- f) Determine the character table and the remaining representation(s).

Problem 18

Let V be a finite-dimensional vector space and $P: V \to V$ a linear operator with $P^2 = P$.

- a) Show that there exist subspaces U and W with $V = U \oplus W$, $P|_U = 1$ and $P|_W = 0$. Let $\langle \cdot, \cdot \rangle$ be a scalar product on V, and let $P^{\dagger} = P$.
 - b) Show that $U = W^{\perp}$.

Problem 19

Let
$$g = \begin{pmatrix} u & -\overline{v} \\ v & \overline{u} \end{pmatrix}$$
, $u, v \in \mathbb{C}$ with $|u|^2 + |v|^2 = 1$.

- a) Verify that $g \in SU(2)$, and explain why every $g \in SU(2)$ can be written in this way. The basis vectors $|\uparrow\rangle$ and $|\downarrow\rangle$ of \mathbb{C}^2 , as defined in the lecture⁰, transform in the two-dimensional representation $\Gamma^2(g) = g \ \forall g \in SU(2)$.
- b) Write $\Gamma^2(g)|\uparrow\rangle$ and $\Gamma^2(g)|\downarrow\rangle$ as linear combinations of $|\uparrow\rangle$ and $|\downarrow\rangle$. Consider now $\mathbb{C}^2\otimes\mathbb{C}^2$ with the product basis $|\uparrow\uparrow\rangle=|\uparrow\rangle\otimes|\uparrow\rangle$ etc. (cf. lecture). Under SU(2) this basis transforms in $\Gamma^{2\otimes 2}=\Gamma^2\otimes\Gamma^2$.
 - c) Expand $\Gamma^{2\otimes 2}|\uparrow\uparrow\rangle$ etc. in the product basis.
 - d) Show: span($|0,0\rangle$) and span($|1,1\rangle, |1,0\rangle, |1,-1\rangle$) (as defined in the lecture) are invariant under SU(2), and thus carry one- and three-dimensional representations of SU(2), respectively, i.e. $\Gamma^{2\otimes 2} = \Gamma^1 \oplus \Gamma^3$.
 - e) Explicitly determine the representation matrices $\Gamma^1(g)$ and $\Gamma^3(g)$.