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Groups and Representations

Homework Assignment 6 (due on 26 November 2025)

Problem 24
We consider the abelian group C3 = {e,a,a '} = Zs.

a) How many (non-equivalent) irreps does C3 have, what are their dimensions and how
often do they appear in the regular rep?

b) Show that

1
€1 = §(€+(l+a71)

is a primitive idempotent, generating the trivial rep.

c) Use the ansatz
ey = xe +ya + za '

in order to find all primitive idempotents.

d) For each primitive idempotent find out whether it generates a new (non-equivalent)
irrep or an irrep equivalent to one generated by a previous idempotent.

e) Specify all minimal left ideals and construct the corresponding irreps of C3. Collect
your results in a table.

Problem 25
Let V' be a (finite dimensional) vector space and A : V' — V a linear map. Show that if
A is nilpotent (i.e. if for some n € N we have A"v =0 Vv € V) then tr A = 0.

Problem 26 3
We can also write elements of the A(S,,) in birdtrack notation. In particular, we denote
symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

Note that we include a factor of # in the definition of bars over n lines. For instance,

:D::%(:JFX) and
(=X

Notice that in birdtrack notation the sign of a permutation, (—1)% is determined by the
number K of line crossings; if more than two lines cross in a point, one should slightly

perturb the diagram before counting, e.g. >< ~ X (K=3).

(*)

3will be discussed in the lecture



a) Expand :I: and HE as in ().

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of

lines, e.g.
1 /—
jﬁ:_<_+><) or

- 2

1 1 /—
i s _§<>C><_ ><§<)—5(—‘ 96)
It follows directly from the definition of S and A that when intertwining any two lines S
remains invariant and A changes by a factor of (—1), i.e.

and

b) Explain why this implies that whenever two (or more) lines connect a symmetriser
to an anti-symmetrizer the whole expression vanishes, e.g.

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on

the r.h.s. of
==+ L+ .+ |
n —

we have sorted the terms according to where the last line is mapped — to the nth, to the

(n—1)th, ..., to the first line line. Multiplying with ‘|| - from the left and disentangling

lines we obtain the compact relation

(eI

c¢) Derive the corresponding recursion relation for anti-symmetrisers.




Problem 27

For 0 € S, and j =1,...,n let k;(o) be the number of (disjoint) cycles of length j in o,
e.g. ki(e) =n and kj(e) =0 Vj > 1. Show:

a) The conjugacy class of o is determined by its cycle structure, i.e.
o] :={ror 7€ S} ={r €S, kj(r)=kj(0),j=1,...,n}.

It’s almost trivial using the birdtrack notation (see Section 1.4)!

HINT: In order to make the cycle structure visible consider the birdtrack diagram
of o and connect the first line on the left to the first line on the right etc.; e.g. for
(12), (132) € S5 consider

and

b) The number of elements of a class is given by

[o]l =

n!

H ]{Zj 'ij '

j<n
¢) Fun exercise (optional): Watch the video An Impossible Bet by minutephysics,

https://youtu.be/eivG1BK1K6M ,

and come up with a good strategy. Don’t watch the solution! Think about cycles
instead.

Problem 28
For A € C™*" the matrix exponential is defined as

e = exp(A) = ZA—

V!
v=0

Prove:

a) The series converges absolutely and uniformly.
HINT: On C™*™ use the operator norm

4= sup 2
vecm\fo} |Vl
for which we have ||AB|| < ||A]l | B|l-
b) For T € GL(n) we have e7AT " = TeAT—1,
c) e is the unique solution of the initial value problem X (t) = AX (), X(0) = 1.

)
)
d) For t, s € C we have elt+9)4 = ¢t4es4,
)
)

(eA) 4.
e

¢}

A

f) det



