Groups and Representations

Homework Assignment 6 (due on 26 November 2025)

Problem 24

We consider the abelian group $C_3 = \{e, a, a^{-1}\} \cong \mathbb{Z}_3$.

- a) How many (non-equivalent) irreps does C_3 have, what are their dimensions and how often do they appear in the regular rep?
- b) Show that

$$e_1 = \frac{1}{3}(e + a + a^{-1})$$

is a primitive idempotent, generating the trivial rep.

c) Use the ansatz

$$e_2 = xe + ya + za^{-1}$$

in order to find all primitive idempotents.

- d) For each primitive idempotent find out whether it generates a new (non-equivalent) irrep or an irrep equivalent to one generated by a previous idempotent.
- e) Specify all minimal left ideals and construct the corresponding irreps of C_3 . Collect your results in a table.

Problem 25

Let V be a (finite dimensional) vector space and $A: V \to V$ a linear map. Show that if A is nilpotent (i.e. if for some $n \in \mathbb{N}$ we have $A^n v = 0 \ \forall v \in V$) then $\operatorname{tr} A = 0$.

Problem 26³

We can also write elements of the $\mathcal{A}(S_n)$ in birdtrack notation. In particular, we denote symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

$$\frac{1}{n!}s = \frac{1}{n!}\sum_{p \in S_n} p = \boxed{\boxed{}}$$
 and
$$\frac{1}{n!}a = \frac{1}{n!}\sum_{p \in S_n} \operatorname{sgn}(p)p = \boxed{\boxed{}}$$

Note that we include a factor of $\frac{1}{n!}$ in the definition of bars over n lines. For instance,

Notice that in birdtrack notation the sign of a permutation, $(-1)^K$, is determined by the number K of line crossings; if more than two lines cross in a point, one should slightly perturb the diagram before counting, e.g. $\swarrow \leadsto (K=3)$.

³will be discussed in the lecture

a) Expand
$$\square$$
 and \square as in $(*)$.

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of lines, e.g.

$$= \frac{1}{2} \left(= + \times \right)$$
 or
$$= \frac{1}{2} \left(= - \times \right) .$$

It follows directly from the definition of S and A that when intertwining any two lines S remains invariant and A changes by a factor of (-1), i.e.

b) Explain why this implies that whenever two (or more) lines connect a symmetriser to an anti-symmetrizer the whole expression vanishes, e.g.

$$=0.$$

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on the r.h.s. of

$$\frac{1}{n} = \frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} \right)$$

we have sorted the terms according to where the last line is mapped – to the nth, to the (n-1)th, . . . , to the first line line. Multiplying with $\frac{1}{n-1}$ from the left and disentangling lines we obtain the compact relation

$$\frac{1}{n} = \frac{1}{n} \left(\frac{1}{n} + (n-1) \frac{1}{n} \right).$$

c) Derive the corresponding recursion relation for anti-symmetrisers.

Problem 27

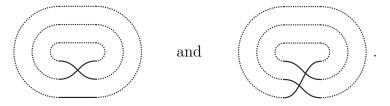
For $\sigma \in S_n$ and j = 1, ..., n let $k_j(\sigma)$ be the number of (disjoint) cycles of length j in σ , e.g. $k_1(e) = n$ and $k_j(e) = 0 \ \forall j > 1$. Show:

a) The conjugacy class of σ is determined by its cycle structure, i.e.

$$[\sigma] := \{ \tau \sigma \tau^{-1} : \tau \in S_n \} = \{ \tau \in S_n : k_j(\tau) = k_j(\sigma), j = 1, \dots, n \}.$$

It's almost trivial using the birdtrack notation (see Section 1.4)!

HINT: In order to make the cycle structure visible consider the birdtrack diagram of σ and connect the first line on the left to the first line on the right etc.; e.g. for $(12), (132) \in S_3$ consider



b) The number of elements of a class is given by

$$|[\sigma]| = \frac{n!}{\prod\limits_{j \le n} k_j! j^{k_j}}.$$

c) Fun exercise (optional): Watch the video An Impossible Bet by minutephysics,

https://youtu.be/eivGlBKlK6M,

and come up with a good strategy. Don't watch the solution! Think about cycles instead.

Problem 28

For $A \in \mathbb{C}^{n \times n}$ the matrix exponential is defined as

$$e^A = \exp(A) = \sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!}.$$

Prove:

a) The series converges absolutely and uniformly.

HINT: On $\mathbb{C}^{n\times n}$ use the operator norm

$$||A|| = \sup_{v \in \mathbb{C}^n \setminus \{0\}} \frac{|Av|}{|v|},$$

for which we have $||AB|| \le ||A|| ||B||$.

- b) For $T \in GL(n)$ we have $e^{TAT^{-1}} = Te^{A}T^{-1}$.
- c) e^{tA} is the unique solution of the initial value problem $\dot{X}(t) = AX(t), X(0) = 1$.
- d) For $t, s \in \mathbb{C}$ we have $e^{(t+s)A} = e^{tA}e^{sA}$.
- e) $(e^A)^{\dagger} = e^{(A^{\dagger})}$.
- f) $\det e^A = e^{\operatorname{tr} A}$.