Definition 1.1 (Group).

A group G is a set together with a map $*: G \times G \to G$ such that

- (i) * is associative: $(a*b) \cdot c = s*(b*c) \quad \forall a,b,c \in G$,
- (ii) there exists an identity element $e \in G$ such that $a * e = e * a = a \quad \forall a \in G$,
- (iii) for every $a \in G$ there exists an inverse element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = 1$.

If G is a finite set, we say that (G, *) is a *finite group*. If a * b = b * a for all $a, b \in G$, we say that (G, *) is an *abelian group*. Whenever a subset $H \subset G$ forms a group with respect to * it is called a *subgroup* of G.

- **Example 1.2.** 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all abelian groups with respect to the usual addition, where e = 1 and $a^{-1} = -a$.
 - 2. $\mathbb{Z}_n \doteq \{0, 1, \dots, n-1\}$ is a finite abelian group with respect to addition modulo n for every $n \in \mathbb{Z}$. The identity element is 0 and the inverse of a is n-a.
 - 3. Then the collection of all permutations of the elements of finite set forms a group under composition. Such groups are called *Symmetric groups* and if the set has n elements, the group is denoted by S_n .
 - 4. The set $GL(n, \mathbb{R})$ of all real, invertible $n \times n$ matrices forms a group under matrix multiplication and the set of orthogonal matrices $O(n, \mathbb{R})$ is an example of a subgroup.

Proposition 1.3. Let (G,*) be a group. Then

- 1. the identity element is unique.
- 2. the inverse of any element is unique.

2

3. $(a^{-1})^{-1} = a \text{ for all } a \in G.$

4.
$$(a*b)^{-1} = b^{-1}*a^{-1}$$
 for all $a, b \in G$.

Definition 1.4. A map $f:(G,*_G)\to (H,*_H)$ is called a *group homomorphism* if

$$f(a *_G b) = f(a) *_H f(b) \quad \forall a, b \in G.$$

Moreover, if f is bijective, we call it a *group isomorphism*. We say that two groups are *isomorphic* (denoted by \cong) whenever there exists a group isomorphism between them.

Definition 1.5 (Conjugacy classes, cosets and normal subgroup). Let (G, *) be a group.

1. The *conjugacy class* of $a \in G$ is defined to be

$$G_a \doteq \{g * a * g^{-1} \mid g \in G\}.$$

2. Given a subgroup $H \subset G$ and an element $g \in G$, we define the left/right cosets by

$$gH \doteq \{gh \mid h \in H\}$$
 and $Hg \doteq \{hg \mid h \in H\}$.

3. A subgroup $H \subset G$ is said to be *normal* if

$$gH = Hg \quad \forall g \in G$$
.

Definition 1.6 (Quotient group).

Let N be a normal subgroup of (G, *). Then the space of cosets

$$G/H \doteq \{gH \mid g \in G\}$$

forms a group under the operation

$$(g_1H) \cdot (g_2H) = (g_1 * g_2)H$$
.

Example 1.7. 1. $2\mathbb{Z} \doteq \{0, 2, 4, \ldots\}$ is a normal subgroup of \mathbb{Z} and $\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}_2$.

2.
$$\mathbb{R}/\mathbb{Z} \cong U(1) \doteq \{z \in \mathbb{C} : |z| = 1\}.$$

Definition 1.8 (Group action).

Let (G,*) be a group and X be a set. A group action of G on X is a map

$$G \times X \to X, \quad (g, x) \mapsto g \triangleright x$$

such that

- (i) $e \triangleright x = x \quad \forall x \in X$
- (ii) $(a * b) \triangleright x = a \triangleright (b \triangleright x)$ $a, b \in G$.

A group action is said to be *free* if

$$g \triangleright x = x \implies g = e$$
.

A group action is said to be transitive if

$$\forall x, y \in X \ \exists g \in G : x = g \triangleright y.$$

- **Example 1.9.** 1. Any group acts *freely* and *transitively* on itself by left (or right) multiplication.
 - 2. Symmetric groups act on the set of vertices of polyhedra.
 - 3. \mathbb{Z} acts on \mathbb{R} by translation by an integer, i.e.

$$n \triangleright x = x + n$$
.

Such action is free but not transitive.

4. $GL(n,\mathbb{R})$ and its subgroups act on the vector space \mathbb{R}^n (by matrix multiplication).

Theorem 1.10 (Cayley's theorem).

Every group is isomorphic to a subgroup of a symmetric group.

Definition 1.11 (Ring).

A ring R is a set together with an addition $+: R \times R \to R$ and a multiplication $\times: R \times R \to R$ such that

- (i) (R, +) is an abelian group,
- (ii) × is associative,
- (iii) distributivity holds:

$$a \times (b+c) = a \times b + a \times c$$
 $\forall a, b, c \in R$
 $(a+b) \times c = a \times c + b \times c$ $\forall a, b, c \in R$.

We say $(R, +, \times)$ is a *commutative ring* whenever the multiplication is also commutative. If there is an element $1 \in R$ such that $a \times 1 = 1 \times a = a$ for all $a \in R$, we say that $(R, +, \times)$ is a *unital ring*.

Example 1.12. 1. $(\mathbb{Z}, +, \cdot)$ is a unital commutative ring.

4

2. The set $\mathbb{R}[x]$ of polynomials with coefficients in any commutative ring R is itself a ring.

Definition 1.13 (Field).

A field is a unital commutative ring with $0 \neq 1$ such that all nonzero elements have a multiplicative inverse.

Example 1.14. 1. \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields under the usual operations.

2. \mathbb{Z}_p is a finite (Galois) field if and only if p is prime.

Definition 1.15 (Vector space).

A vector space (or linear space) over a field \mathbb{K} (\mathbb{R} or \mathbb{C}) is a set V along with an addition

$$+: V \times V \to V$$

and a scalar multiplication

$$\cdot: \mathbb{K} \times V \to V$$

satisfying

- (i) additive associativity: $(u+v)+w=u+(v+w) \quad \forall u,v,w \in V$
- (ii) additive identity: $\exists 0 \in V : v + 0 = v \quad \forall v \in V$
- (iii) additive inverse: $\forall v \in V \ \exists (-v) \in V : v + (-v) = 0$
- (iv) additive commutativity: $u + v = v + u \quad \forall u, v \in V$.
- (v) distributivity from the left: $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v \quad \forall \, u,v \in V \text{ and } \lambda \in \mathbb{K}$
- (vi) distibutivity from the right: $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v \quad \forall v \in V \text{ and } \forall \lambda, \mu \in \mathbb{K}$
- (vii) multiplicative associativity: $(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v) \forall v \in V \text{ and } \forall \lambda, \mu \in \mathbb{K}$
- (viii) multiplicative identity: $1 \in \mathbb{K} : 1 \cdot v = v \quad \forall v \in V$

If a set $W \subset V$ forms a vector space under the same operation, it is called a linear subspace.

Remark 1.16. Properties (i)-(iv) can be summarised as saying that V with its addition forms an Abelian group. Property (v) says that the map

$$\lambda \cdot \colon V \to V, \, v \mapsto \lambda \cdot v$$

is a group homomorphism for each $\lambda \in \mathbb{K}$. The remaining properties are equivalent to saying that the map

$$\mathbb{K} \to \operatorname{Hom}_{\operatorname{Grp}}(V, V), \ \lambda \mapsto \lambda$$

is a homomorphism of rings.

5

Definition 1.17 (Linear maps).

A map $f: V \to W$ between vector spaces (over the same field) is said to be *linear* if for all $\lambda \in \mathbb{K}$ and $u, v \in V$ it holds that

$$f(u+v) = f(u) + f(v)$$

$$f(\lambda u) = \lambda f(u).$$

A bijective linear map is called a *linear isomorphism*. We define the *kernel* and the *image* of the linear map by

$$\ker L = \{ v \in V : L(v) = 0 \}$$

and

Im
$$f = \{ w \in W : \exists v \in V, w = L(v) \}$$

respectively. The set of all linear maps between V and W is denoted by $\mathcal{L}(V, W)$.

Definition 1.18.

Let V be a vector space and $B = (v_1, v_2, ...)$ a tuple of vectors in V. The tuple B is said to be *linearly independent* if for every tuple of scalars $(\lambda_1, \lambda_2, ..., \lambda_n)$

$$\sum_{j=1}^{n} \lambda_j v_j = 0$$

implies $\lambda_j = 0, \forall j \in \{1, \dots n\}.$

We say B spans V if any vector $v \in V$ can be written as a linear combination of elements of B, i.e. there exist scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, such that

$$v = \sum_{j=1}^{n} \lambda_j v_j .$$

We call B a basis of V if it is both linearly independent and spans V.

Theorem 1.19 (Dimension theorem). Every vector space has a basis and all bases of a vector space have the same cardinality. This cardinality is called the dimension of the vector space.

Two vector spaces are isomorphic if and only if they have the same dimension.

Proposition 1.20. Every finite dimensional vector space over \mathbb{K} is isomorphic to \mathbb{K}^n for some $n \in \mathbb{N}$. Each choice of basis provides an isomorphism. A linear map $f: V \to W$ from an n-dimensional to an m-dimensional vector space can be represented by an $m \times n$ matrix.

Remark 1.21. The definition of a basis presented here is also called Hamel-basis. In the context of infinite-dimensional vector spaces equipped with a topology one usually uses so called Schauder-bases instead.

Example 1.22. 1. \mathbb{R}^3 is a three dimensional vector space and the Cartesian coordinate vectors $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ and $e_3 = (0,0,1)$ form a basis.

- 2. \mathbb{C} is a one dimensional vector space over \mathbb{C} and a two dimensional vector space over \mathbb{R} .
- 3. The space $\mathbb{M}_{n,m}(\mathbb{K})$ of all $n \times m$ matrices is a vector space over \mathbb{K} with component-wise operations.
- 4. For any two vector spaces V and W it holds that $\mathcal{L}(V, W)$ is a vector space under point-wise operations.
- 5. The Polynomial ring $\mathbb{K}[X]$ is an infinite dimensional vector space and $(1, X, X^2, X^3, \dots)$ is a basis.
- 6. The space $C(\mathbb{R}, \mathbb{R})$ of continuous real-valued functions on \mathbb{R} is an infinite dimensional vector space with no countable basis.

Definition 1.23.

Let V be a vector space and W a subspace of V. The quotient space V/W is defined as the set of equivalence classes under the relation

$$u \sim v \iff u - v \in W$$

together with the natural addition and scalar multiplication.

Theorem 1.24 (Isomorphism Theorem).

Let $f: V \to W$ be a linear map. The quotient space $V/\ker(f)$ is isomorphic to $\operatorname{Im}(f)$

Proposition 1.25.

Let V be a finite dimensional vector space and W a subspace of V. It holds that

$$\dim(V/W) = \dim(V) - \dim(W).$$

Theorem 1.26 (The Rank nullity theorem).

Let $f: V \to W$ be a linear map and suppose that V is finite dimensional. Then,

$$\dim(V) = \dim(\ker f) + \dim(\operatorname{Im} f).$$

Definition 1.27 (Eigenvalues and eigenvectors).

Let $f \in \mathcal{L}(V, V)$ be a linear map. We say that a scalar λ is an eigenvalue of f with eigenvector $v \in V$ whenever

$$f(v) = \lambda v$$

holds. The linear subspace $\ker(f - \lambda i d_V)$ is called the *eigenspace* of λ . The set of all eigenvales $\sigma(f)$ is called the *spectrum* of f.

Definition 1.28 (Inner product).

An inner product on a vector space V over K is a map $\langle \cdot, \cdot \rangle : V \times V \to K$ satisfying

- 1. $\langle v, w \rangle = \overline{\langle w, v \rangle}, \quad \forall v, w \in V.$
- 2. $\langle \lambda v + w, u \rangle = \lambda \langle v, u \rangle + \langle w, u \rangle, \quad \forall v, w, u \in V.$
- 3. $\langle v, v \rangle > 0$, $\forall v \in V \setminus \{0\}$.

A vector space together with an inner product is called an *inner product space*.

Definition 1.29. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and $f \in \mathcal{L}(V, V)$. We denote by f^* the unique linear map that satisfies

$$\langle f(v), w \rangle = \langle v, f^*(w) \rangle, \quad \forall v, w \in V$$

it is called the adjoint of f. We call f normal if $f \circ f^* = f^* \circ f$ and self-adjoint if $f = f^*$.

Remark 1.30. In the finite dimensional case, all the above concepts have their matrix counterpart: once we fix a basis on each vector space, vectors and linear maps are uniquely represented by their component matrices.

Theorem 1.31 (Finite dimensional Spectral theorem). Let V be a finite dimensional inner product space and consider a linear map $f \in \mathcal{L}(V, V)$. If f is normal, then there exists a basis of V consisting of eigenvectors of f.