CHAPTER 1

Linear Algebra

Definition 1.1 (Group).
A group G is a set together with a map * : G X G — G such that

(i) = is associative: (axb)-c=sx*(bxc) Va,b,c€ G,

(ii) there exists an identity element e € G such that axe =exa=a Va € G,

(iii) for every a € G there exists an inverse element a~! € G such that axa™! =

alxa=1.

If G is a finite set, we say that (G,x*) is a finite group. If a xb = b a for all
a,b € G, we say that (G, %) is an abelian group. Whenever a subset H C G forms
a group with respect to x it is called a subgroup of G.

Example 1.2. 1. Z,Q,R,C are all abelian groups with respect to the usual
addition, where e = 1 and ™! = —a.

2. Zn, = {0,1,...,n — 1} is a finite abelian group with respect to addition
modulo n for every n € Z. The identity element is 0 and the inverse of a is
n —a.

3. Then the collection of all permutations of the elements of finite set forms
a group under composition. Such groups are called Symmetric groups and
if the set has n elements, the group is denoted by .S5,,.

4. The set GL(n,R) of all real, invertible n x n matrices forms a group un-
der matrix multiplication and the set of orthogonal matrices O(n,R) is an
example of a subgroup.

Proposition 1.3. Let (G,*) be a group. Then

1. the identity element is unique.

2. the inverse of any element is unique.
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3. (et =a foralacG.
4. (axb)"P=b"1xa" ! foralla,beG.

Definition 1.4. A map f : (G,*qg) — (H,x*p) is called a group homomorphism
if
fla*xgb) = f(a)*g f(b) Va,beQG.

Moreover, if f is bijective, we call it a group isomorphism. We say that two
groups are isomorphic (denoted by 2¢) whenever there exists a group isomorphism
between them.

Definition 1.5 (Conjugacy classes, cosets and normal subgroup).
Let (G, %) be a group.

1. The conjugacy class of a € G is defined to be

Go={gxaxg'|geG}.

2. Given a subgroup H C G and an element g € G, we define the left /right
cosets by

gH ={gh|he€ H} and Hg={hg|hec H}.

3. A subgroup H C G is said to be normal if
gH=Hg VgeG.

Definition 1.6 (Quotient group).
Let N be a normal subgroup of (G, x). Then the space of cosets

G/H ={gH |g € G}
forms a group under the operation
(91H) - (92H) = (91 * g2)H .

Example 1.7. 1. 2Z = {0,2,4,...} is a normal subgroup of Z and Z/27 =
Zo.

2. R/Z=U(1)={2€C : |z|=1}.

Definition 1.8 (Group action).
Let (G, *) be a group and X be a set. A group action of G on X is a map

GxX—>X, (g,x)—>g>a

such that
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(i) epx=2 VereX
(ii) (axb)pxz=av>(brz) a,beqG.
A group action is said to be free if
gbr=r = g=e.
A group action is said to be transitive if
Ve,ye Xdge G : xz=gpy.

Example 1.9. 1. Any group acts freely and transitively on itself by left (or
right) multiplication.

2. Symmetric groups act on the set of vertices of polyhedra.

3. Z acts on R by translation by an integer, i.e.
n>br=x-+n.
Such action is free but not transitive.

4. GL(n,R) and its subgroups act on the vector space R" (by matrix multi-
plication).

Theorem 1.10 (Cayley’s theorem).
Every group is isomorphic to a subgroup of a symmetric group.

Definition 1.11 (Ring).
A ring R is a set together with an addition + : R X R — R and a multiplication
X : R X R — R such that

(i) (R,+) is an abelian group,
(ii) x is associative,
(iii) distributivity holds:
ax(b+c)=axb+axc Va,b,ce R
(a+b)xc=axc+bxc Va,b,ce R.

We say (R, +, x) is a commutative ring whenever the multiplication is also com-
mutative. If there is an element 1 € R such that a x 1 =1 x a = a for all a € R,
we say that (R, 4+, x) is a unital ring.

Example 1.12. 1. (Z,+,-) is a unital commutative ring.
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2. The set R[z] of polynomials with coefficients in any commutative ring R is
itself a ring.

Definition 1.13 (Field).
A field is a unital commutative ring with 0 1 such that all nonzero elements
have a multiplicative inverse.

Example 1.14. 1. Q, R and C are fields under the usual operations.
2. 7y is a finite (Galois) field if and only if p is prime.

Definition 1.15 (Vector space).
A wector space (or linear space) over a field K (R or C) is a set V' along with an
addition

+:VxV =V

and a scalar multiplication

T KxV =V
satisfying
(i) additive associativity: (u+v)+w=u+ (v+w) Vu,v,w eV
additive identity: J0€V : v+0=v Vv €V
additive inverse: VYo eV I(—v) eV : v+ (—v) =0

additive commutativity: uw4+v=v+u Vu,veV.

)
)
)
)
(v) distributivity from the left: ~ A-(u+v) = X-u+A-v Vu,v € Vand A e K
) distibutivity from the right: (A+p)-v = Av+pv VYo e Vand VA pue K
) multiplicative associativity:  (Ap)-v=A-(u-v)Vo e Vand VA pueK
)

multiplicative identity: 1€K : 1.v=v Yv €V

If a set W C V forms a vector space under the same operation, it is called a
linear subspace.

Remark 1.16. Properties (i)-(iv) can be summarised as saying that V with its
addition forms an Abelian group. Property (v) says that the map

AV =aVos Ao

is a group homomorphism for each A € K. The remaining properties are equiva-
lent to saying that the map

K — Homgp(V, V), A= A

is a homomorphism of rings.



1. LINEAR ALGEBRA 5

Definition 1.17 (Linear maps).
A map f : V — W between vector spaces (over the same field) is said to be
linear if for all A € K and u,v € V it holds that

flutv) = f(u)+ f(v)
fu) = Af(u).

A bijective linear map is called a linear isomorphism. We define the kernel and
the image of the linear map by

kerL={veV : L(v) =0}
and
Imf={weW : JveV, w=L(v)}
respectively. The set of all linear maps between V' and W is denoted by L(V, W).

Definition 1.18.
Let V' be a vector space and B = (v1,v2,...) a tuple of vectors in V. The tuple
B is said to be linearly independent if for every tuple of scalars (A1, Ag, ... \n)

i )\jvj =0
j=1

implies A\; =0, Vj € {1,...n}.

We say B spans V if any vector v € V' can be written as a linear combination of
elements of B, i.e. there exist scalars A1,..., A, € K, such that

n
v = E )\jvj.
Jj=1

We call B a basis of V' if it is both linearly independent and spans V.

Theorem 1.19 (Dimension theorem). Every vector space has a basis and all
bases of a wvector space have the same cardinality. This cardinality is called the
dimension of the vector space.

Two vector spaces are isomorphic if and only if they have the same dimension.

Proposition 1.20. FEvery finite dimensional vector space over K is isomorphic
to K™ for some n € N. FEach choice of basis provides an isomorphism. A linear
map f:V — W from an n-dimensional to an m-dimensional vector space can be
represented by an m X n matrix.

Remark 1.21. The definition of a basis presented here is also called Hamel-basis.
In the context of infinite-dimensional vector spaces equipped with a topology one
usually uses so called Schauder-bases instead.



1. LINEAR ALGEBRA 6

Example 1.22. 1. R3 is a three dimensional vector space and the Cartesian
coordinate vectors e; = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1) form a
basis.

2. C is a one dimensional vector space over C and a two dimensional vector
space over R.

3. The space M, ,,(K) of all n x m matrices is a vector space over K with
component-wise operations.

4. For any two vector spaces V and W it holds that £(V, W) is a vector space
under point-wise operations.

5. The Polynomial ring K[X] is an infinite dimensional vector space and
(1, X, X2, X3, ...) is a basis.

6. The space C(R,R) of continuous real-valued functions on R is an infinite
dimensional vector space with no countable basis.

Definition 1.23.
Let V be a vector space and W a subspace of V. The quotient space V/W is
defined as the set of equivalence classes under the relation

u~v <= u—vew

together with the natural addition and scalar multiplication.

Theorem 1.24 (Isomorphism Theorem).
Let f: V. — W be a linear map. The quotient space V/ker(f) is isomorphic to

Im(f)

Proposition 1.25.
Let V' be a finite dimensional vector space and W a subspace of V. It holds that

dim(V/W) = dim(V') — dim(W) .

Theorem 1.26 (The Rank nullity theorem).
Let f:V — W be a linear map and suppose that V is finite dimensional. Then,

dim(V) = dim(ker f) + dim(Im f) .

Definition 1.27 (Eigenvalues and eigenvectors).
Let f € L(V,V) be a linear map. We say that a scalar X is an eigenvalue of f
with eigenvector v € V' whenever

fv) =M

holds. The linear subspace ker(f — Aidy ) is called the eigenspace of A. The set
of all eigenvaules o(f) is called the spectrum of f.
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Definition 1.28 (Inner product).
An inner product on a vector space V over Kisamap (-,-) : VxV — K satisfying

L. (v,w) = (w,v), Yv,weV.
2. (A +w,u) = Nv,u) + (w,u), Yv,w,uecV.

3. (v,v) >0, YveV\{0}.

A vector space together with an inner product is called an inner product space.

Definition 1.29. Let (V,(-,-)) be an inner product space and f € L(V,V). We
denote by f* the unique linear map that satisfies

(f(v),w) = (v, [*(w)), Yo, w eV

it is called the adjoint of f. We call f normal if fo f* = f* o f and self-adjoint
if f=f*

Remark 1.30. In the finite dimensional case, all the above concepts have their
matrix counterpart: once we fix a basis on each vector space, vectors and linear
maps are uniquely represented by their component matrices.

Theorem 1.31 (Finite dimensional Spectral theorem). Let V' be a finite dimen-
sional inner product space and consider a linear map f € L(V, V). If f is normal,
then there exists a basis of V' consisting of eigenvectors of f.
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