
Chapter 7

Classical mechanics

A physical theory is a mathematical model for how (parts of) the physical world
work. Physics is about

1. inventing or discovering good theories/models,

2. collecting empirical data (experiments),

3. comparing the empirical facts about our world with our theory/model.

Classical mechanics

Classical mechanics is built on the following observations about the world:

1. Space and time. The physical space is three dimensional and time is one
dimensional, and there is not preferred position nor time in the universe.

2. Newton’s principle of determinacy. The positions and velocities of a
mechanical system at certain time uniquely determine all it’s motion (and
hence future and past positions and velocities).

3. Galileo’s principle of relativity. There exists so-called inertial coordi-
nate systems such that

(i) The laws of nature are the same at any time in all inertial coordinate
systems.

(ii) All coordinate systems in uniform rectilinear motion with respect to
an inertial one are themselves inertial.

In mathematical terms these observations suggest that 1) the physical universe
will be modeled in R×R3, where there is not preferred origin, 2) a second or-
der (in time) differential equation will describe the whole dynamics and 3) such
equations will be invariant under certain symmetries of the space and time.
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Newtonian mechanics

Newton established a mathematical model for the motion of N particles (apples,
planets, atoms, bullets, ...) in physical space and time. The Newtonian repre-
sentation of the physical space is E3 (three-dimensional affine space), R3 without
choice of origin. The time in Newtonian mechanics is described by E1 (affine
line), R without choice of origin.

Definition 7.1 (Configuration space of N point particles).

q ∈ R3N = R3 × . . .× R3︸ ︷︷ ︸
N -copies

= configuration space.

q = (q1, q2, . . . , qN ), qj ∈ R3 position of the jth particle.

In this model, the "world" is completely specified by the position of all par-
ticles at all times, i.e. by a curve

γ : R → R3N , t 7→ γ(t)

in configuration space.

The physical "law" is a system of second-order ODEs for γ, Newton’s law:

γ̈ =M−1 · F (t, γ, γ̇)

with M being the mass matrix, F (t, γ, γ̇) the force field and γ̈ the acceleration.
Only the solutions to this ODE are possible worlds, according to Newtonian
mechanics. Assuming sufficient regularity of F , a unique solution is determined
by specifying the positions γ(t0) and the velocities γ̇(t0) at some time t0 ∈ R ⇒
predictions of the theory.
The explicit specification of M and F is also part of the law.

Example 7.2 (Gravitating bodies).

M =

m1 0
. . .

0 mN


with mi being the mass of the ith body and

Fj(t, q, v) = Fj(q) = G
∑
i ̸=j

mimj(qi − qj)

∥qi − qj∥3
.

For N = 2 for example, the Newton’s law is(
γ̈1(t)
γ̈2(t)

)
=

(
m1 0
0 m2

)−1(
F1(t, γ(t))
F2(t, γ(t))

)
,
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and reading out the components γj(t) = (xj(t), yj(t), zj(t)), j = 1, 2, we are left
with the system

ẍ1(t) = Gm2
x2(t)− x1(t)

∥γ1(t)− γ2(t)∥3
ẍ2(t) = Gm1

x1(t)− x2(t)

∥γ1(t)− γ2(t)∥3

ÿ1(t) = Gm2
y2(t)− y1(t)

∥γ1(t)− γ2(t)∥3
ÿ2(t) = Gm1

y1(t)− y2(t)

∥γ1(t)− γ2(t)∥3

z̈1(t) = Gm2
z2(t)− z1(t)

∥γ1(t)− γ2(t)∥3
z̈2(t) = Gm1

z1(t)− z2(t)

∥γ1(t)− γ2(t)∥3

of six second order ODEs. One finds Kepler’s ellipses as special solutions, meaning
Kepler’s laws follow from Newtonian gravitation.

The gravitational force is an example of a conservative force field, i.e. a force
F : R3N → R3N that is the negative gradient of a scalar function V : R3N → R,
the so-called potential

F = −∇V .

For conservative forces, Newtonian mechanics display "conservation of energy" .
This means the function

E : R3N × R3N → R

E(q, v) =
N∑
j=1

mj

2
∥vj∥2 + V (q)

is constant along solutions of γ̈ = −M−1∇V (γ), i.e.

E(γ(t), γ̇(t)) = E(γ(t0), γ̇(t0)) ∀t ∈ R

In other words, the solutions of the Newtonian evolution stay on level sets of
the function E!

If V is translation invariant, i.e.

V (q1 + a, q2 + a, . . . , qN + a) = V (q1, . . . , qN ) ∀a ∈ R3

then also the total momentum:

P (q, v) = P (v) =

N∑
j=1

mjvj ∈ R3

is conserved. If V is invariant under rotations of R3, i.e.

V (Rq1, . . . , RqN ) = V (q1, . . . , qN )
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then angular momentum

L(q, v) =

N∑
j=1

mjqj × vj

is conserved. This observation of symmetries leading to the conservation of func-
tions in q and p is more than by accident but follows the so-called conservation
laws. As is the case for any 2nd-order ODE, one can write Newton’s equation as
a first-order ODE on R6N leading to the concept of Hamiltonian mechanics.

Lagrangian mechanics

Another very popular and useful formalism is the Lagrangian formulation of
classical mechanics as a variational problem: A Lagrangian function is a function

L : R3N × R3N → R, (q, v) 7→ L(q, v)

(e.g. L(q, v) =
N∑
j=1

mj

2 ∥vj∥2 − V (q)). Let

Γ = {γ : C2([0, T ],R3N )}

the space of C2-paths in configuration-space on time interval [0, T ]. The action
of such a path is

S(γ) =

T∫
0

L(γ(t), γ̇(t)) dt

S : Γ → R

Then the principle of least action asserts that the physically possible paths are
those for which S (when adding appropriate constraints) is critical, i.e.

D(S − λ ·H)|γ = 0 Euler-Lagrange equation (7.1)

As

DS|γh = DvL|(γ(T ),γ̇(T )) · h(T )−DvL|(γ(0),γ̇(0)) · h(0)

+

T∫
0

{
DqL|(γ(t),γ̇(t)) −

(
d

dt
DvL(γ(t),γ̇(t))

)}
h(t) dt

a part of Eq. (7.1) is often (when h is only contained at single points)

DqL|(γ(t),γ̇(t)) −
d

dt
DvL|(γ(t),γ̇(t) = 0 ∀t

For L =
∑ mj

2 ∥vj∥2 − V (q) these are exactly Newton’s equations.
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Hamiltonian mechanics

Another approach is the one of Hamiltonian mechanics. The phase space of N
particles in R3 is

P = R6N , x ∈ P ,

where
x = (q1, . . . , qN︸ ︷︷ ︸

positions

, p1, . . . , pN︸ ︷︷ ︸
momenta

)

(in general, P is a symplectic space or manifold). The canonical symplectic form
on P = R6N is

J : R6N × R6N → R, (x1, x2) 7→ ⟨x1|Ix2⟩

with

I =

(
0 idR3N

−idR3N 0

)
, IT = −I

The law of motion is the first-order ODE on P where the vector field is the
symplectic gradient of a function. H : P → R, the Hamiltonian:

α̇ = I∇H(α), α : R → P = R6N

With α(t) = (Q(t), P (t)) this reads(
Q̇(t)

Ṗ (t)

)
=

(
0 id

−id 0

)
·
(
∇qH(Q(t), P (t))
∇pH(Q(t), P (t))

)
=

(
∇pH(Q(t), P (t))
−∇qH(Q(t), P (t))

)

For H(q, p) =
N∑
j=1

1
2mj

∥pj∥2 + V (q) one finds again Newton’s equation.

Let Φ : R× P → P, (t, x) 7→ αx(t) be the flow of a Hamiltonian system. Then
one has

1. conservation of energy: H ◦ Φt = H ∀t ∈ R

2. conservation of phase space volume (Liouville’s theorem):

Φ∗tλ = λ (i.e. λ(Φt(A)) = λ(A) ∀A ∈ B(P ))

with λ the Lebesgue measure, respectively Liouville measure.
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Exercises

1. Check that the Newtonian potential

V (q) = −G
2

∑
i ̸=j

mjmi

∥qi − qj∥

leads to the Newton’s gravitational force field.

2. Show that under the time-evolution of an N -particle system obeying Newton’s
law for a given conservative force F (q, v) = −∇V (q, v), the energy

E(q, v) =
1

2

N∑
i=1

mi∥vj∥2 + V (q)

is conserved.

3. Consider a pendulum of length L and denote by θ the angle formed with the
vertical axis. Denote by g the norm of the gravitational field (assume it to be
constant). Use Newton’s law to derive the equation of motion

d2θ

dt2
+
g

L
sin θ = 0 .
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