Exercise Sheet 1: Algebra

- 1. Let (G, *) be a group. Show the following statements:
 - (i) the identity element is unique.
 - (ii) the inverse of any element is unique.
- (iii) $(a^{-1})^{-1} = a$ for all $a \in G$.
- (iv) $(a*b)^{-1} = b^{-1} * a^{-1}$ for all $a, b \in G$.
- **2.** Let $((G, +), \cdot)$ be a ring. Prove the following statements:
 - (i) Denoting the neutral element of + by 0,

$$a \cdot 0 = 0 \quad \forall a \in G.$$

(ii) For all $a, b \in G$

$$(-a) \cdot b = -(a \cdot b), \qquad a \cdot (-b) = -(a \cdot b), \qquad (-a) \cdot (-b) = a \cdot b.$$

- **3.** Let $((G, +), \cdot)$ be a field. Prove the following statements:
 - (i) For all $a, b, c \in G$

$$\left(\begin{array}{cc} a\neq 0 & \text{and} & a\cdot b=a\cdot d \end{array}\right) \Longrightarrow \left(\begin{array}{c} b=c \end{array}\right).$$

(ii) Let $n \in \mathbb{N}$. If $\mathbb{Z}/n\mathbb{Z}$ is a field, then n is prime.

(Hint: think of the definition of prime and then apply the "mod n".)

(iii) Let $n \in \mathbb{N}$. Assume we know that $\mathbb{Z}/n\mathbb{Z}$ is a unital commutative ring. If n is prime, then $\mathbb{Z}/n\mathbb{Z}$ is a field.

(Hint: Consider all multiples of $a \in \mathbb{Z}/n\mathbb{Z}$ (so, mod n). What would happen if there were p-1 different multiples? You can use the Fundamental Theorem of Arithmetics: "every integer greater than 1 in \mathbb{Z} is prime or can be represented uniquely as a product of prime numbers (up to the order in the multiplication)".)

- **4.** Let V, W be vector spaces and let $L: V \to W$ be a linear map. Show the following:
 - (i) $\ker L$ is a vector subspace of V.
 - (ii) $\operatorname{Im} L$ is a vector subspace of W.
- (iii) L is injective if and only if $\ker L = \{0\}$.
- (iv) If $\dim(V) = \dim(W) < +\infty$, then L is injective if and only if it is surjective. (Since we did not have time to see the rank nullity theorem, use an isomorphism with \mathbb{R}^n and the notion of bases.)
- 5. Let V, W be finite dimensional real vector spaces. Prove the following claims:
 - (i) \mathbb{C} (as a real vector space) $\cong \mathbb{R}^2$.
 - (ii) There exists some $n \in \mathbb{N}$ such that $V \cong \mathbb{R}^n$.
- (iii) $\{L: V \to W \mid L \text{ is linear}\} \cong \mathbb{R}^{\dim(V) \times \dim(W)}$.