CHAPTER 5

Implicit functions and ordinary
differential equations

Implicit function theorem

Say we have a system of m algebraic equations on n variables

Fl(.’El,... ,.ZL'n) =0

Fo(z1,...,2,) =0

In the case of linear equations, if n = m, basic linear algebra tells us that the
solvability depends on the degeneracy of the coefficient matrix, whereas if n < m,
the degeneracy of a coefficient sub-matrix determines the parametrizability of the
space solutions.

In the nonlinear case, one simply "linearizes" the problem around a point and
obtains a similar statement locally. Consider a function

F:R"xR™ - R™, ,Yy) — F(x,
(z,y) = F(z,y)
Rn+m
and think of the zero level set as the set of solutions to a system of algebraic
equations, i.e.
Fi(z1,...,Tn Y1y -Ym) =0
F(z,y) =0 <=
Fm($1>"'7mn7yla"'7ym) =0

where we want to solve for the (yi,...,yn) variables in terms of the extra
(21,...,x,) parameters.

Theorem 5.1 (Implicite function theorem). Let Q@ C R"™™ be open, F €
CH(Q,R™) and
N ={(z,y) € Q| F(z,y) = 0}.
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If for (a,b) € N it holds that the matrix:

OFy OFy

dy1 " Oym
DyF|ap) = : : (a,b)

OFm OFp

Lo b

is invertible, then there ewists open neighbourhoods U, C R" of a and U, € R™
of b with U, x Uy C Q and a function f € C*(Uy,Uy) such that

NN Uz x Uy) = graph(f),
e
V(z,y) €Uy xUy: F(z,y) =0 & f(z)=y.

In other words, one can solve F(x,y) = 0 locally fory. Moreover,

-1
Dfle = = (DyFlagy)  * DoFlia.f(a)) -

Definition 5.2.
Let Q,Q' C R™ be open. A map f € C1(Q, ) is called a diffeomorphism, if it is
bijective and also the inverse f~1 € C1(€?', Q).

Theorem 5.3 (Inverse function theorem). Let Q C R™ be open and f € C1(Q,R").
If for x € Q it holds that Df|, is invertible then there exists an open neighbour-
hood U of x such that fly : U — f(U) C R™ is a diffeomorphism.

Definition 5.4 (Local extremum under constraint).

Let Q C R™ be open and f,h € C1(,R). Let N = {z € Q| h(x) = 0} and
a € N. We say that f has a local extremum (maximum or minimum) at the point
a under the constraint h = 0 if f|y has a local extremum at a.

Theorem 5.5 (Necessary condition for local extremum under constraint). Let
Q, f,hy N as above. If a € N is a regular point of h (i.e. Dh|, # 0) and a local
extremum of f under the constraint h = 0, then there exists A € R such that:

Df|a = ADh|, (5.1)
with \ being the Lagrange parameter.

Theorem 5.6 (Sufficient condition for local extremum under constraint). Let
Q C R™ be open, f,h € C?(,R). Let for a € N the necessary condition Eq. (5.1)
be satisfied, i.e. there exists X\ € R such that DF|, = D(f — Ah)|, = 0, then:

1. If D?*F|4(v,v) > 0 for all v € R™\{0} such that Dh|,v = 0, then f has a
strict local minimum at a under the constraint h = 0.

2. If D?F|,(v,v) <0 for all v € R"\{0} such that Dh|,(v) = 0, then f has a

strict local maximum at a under the constraint h = 0.
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3. If D?F)|, is indefinite in the subspace spanned by vectors satisfying Dh|q(v) =
0, then f has no local extremum at a.

Remark 5.7. If h : Q@ € R® — R¥ then N = {h = 0} is a n — k-dimensional
submanifold. In this case, the necessary condition for extremum under constraint
N becomes

Df|, € span{Dh1lq, Dhsla, ..., Dhgl.}
& MeR: D(f—Ah)a=0 (ie. Dfla=MNDhila+...+ \Dhils) .

Ordinary differential equations

Definition 5.8 (Ordinary differential equation).
Let I C R be an open interval containing 0 and let m € N. An expression of the
form

F(t,7(@),7'(#),7"(®t),....,7™(#) =0

is called an ODEFE of order m, where

F:IxRxRx.. xR—R

m-times

is given and v € C™(I,R) is the unknown.

1. If F does not depend on ¢, the ODE is called autonomous.

2. If the expression is written like

() = f (t Y(t), 7" (1), - - ﬁ“"’”(t))
it is called an explicit ODE.

3. If the expression can be writte like

ym(t) = Z ai(t)Y(t) + r(t)

it is called linear, and r(t) is called the source term. If the source term is
equal to zero we call it homogeneous.

Definition 5.9 (System of ODEs).
Let I C R be an open interval containing 0, let 2 C R” open and let m € N. An
expression of the form

F ()7 #),7"(t),....7™(#) =0
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is called an system of ODEs of order m and dimension n, where
F:IxQxR"x...xR" > R"
N———
m-times

is given and v € C™(I,R") is the unknown. All the nomenclature above trans-
lates easily to systems of ODEs.

Remark 5.10. Non-autonomous first-order and autonomous ODEs of any order
all reduce to autonomous first-order ODEs.

Definition 5.11 (Integral curves).
Let @ C R™ open, v € C(Q,R") a vector field and I C R an open interval
containing 0. A solution v € C(I,9) to the initial value problem

V() =v(v(t))
v(0) =m0
is called an integral curve of v through xy € Q.

Definition 5.12 (Local and global Lipschitz condition).
Let U C R x R™ and v € C(U,R™) be a time-dependent vector field.

1. We say that v satisfies a Lipschitz condition, if there exists L > 0 such that

V(t, ), (ty) €U ot z) ot y)| < Lz =yl

2. We say that v satisfies a local Lipschitz condition, if every (t,z) € U admits
a neighbourhood V' C U such that v|y satisfies a Lipschitz condition.

Theorem 5.13 (Picard-Lindeldf). Let U C R x R™ be a domain and let v €
C(U,R™) satisfy a local Lipschitz condition.

1. Local ezistence: For any (to,x0) € U there exists § > 0 and a curve vy €
CY((to — d,tp + 9),R™) that is a solution of ¥' = v(t,7) with initial datum
’y(to) = Ig-.

2. Uniqueness: If J C R is an interval with tg € J and 7 : J — R™ solves
v = v(t,y) with ¥(tg) = xo, then

At =A(t) Ve JN (to— 6,10 +9).

Definition 5.14 (Maximal solution).

Let v € C(J x Q,R"™) satisfy a local Lipschitz condition. A solution 7 : I — 2 of
v = v(t,~) is called maximal solution, if the following holds: If I ¢ I  J and
5 : T — Qis a solution of v/ = v(t, z) with 7|; = ~, then I = I.



5. IMPLICIT FUNCTIONS AND ORDINARY DIFFERENTIAL EQUATIONS 38

Corollary 5.15. Under the conditions of the Picard-Lindeldf-theorem, there ex-
ists for any initial value a unique mazimal solution.

Theorem 5.16. Let J = (j_,jt+) C R, Q@ C R"™ a domain, and v € C(J x Q,R")
satisfy a local Lipschitz condition. Let y : (t_(to,zo),t+(to, o)) — Q be the
unique mazimal solution of v/ = v(t,x) for the initial value (to,xo) € J x Q. If
t4(to,xo0) < jy, then for any compact K C § there exists 0 < T < ty(to,x0)
such that

’y(t) Qé K vVt € (TK,t+(t0,.CCO)) .

Definition 5.17.

A locally Lipschitz vector field v € C'(2,R"™) is complete, if there exists a global
solution 7., € C1(R, Q) of ¥/ = v(7) with ., (0) = x¢ for any initial value ¢ € .
The associated flow is:

P:RxQ—Q, (t,z) — D(t,x) = v2(t)

and
D, Q — Q, x> Oy(z) = B(t,x)

is called the flow map at time t. It satisfies
(I)to(bsz(l)t_t,_s \V/t,SER

ie.
R — Bij(2 = Q), t— P,

is a groups action of (R, +) on the set .

Theorem 5.18. If v satisfies a local Lipschitz condition and is complete, then
the corresponding flow maps ®; : @ — Q are continuous. If v € C, then the flow
maps D, : Q — Q are also C*.

Linear ordinary differential equations

Definition 5.19 (Non-autonomous homogeneous linear system).
Let J C R be open interval, A : J — L(R™,R™) continuous and v : J — R™.

1. The ODE
V=AW () = A®)7)

is called a non-autonomous, homogeneous, linear system.
2. If b: J — R" is continuous, then
v = A(t) v+ b(t)

is called a non-autonomous, inhomogeneous, linear ODE.
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Example 5.20. In the homogeneous autonomous case
v = Ay
the unique global solution with initial datum xy € R" is

Y(t) = etag

S n n
where et = S £4°
n=0
Theorem 5.21. J C R open, A : J — L(R",R™) and b : J — R" continuous.

Then for very tg € J and xg € R™ there exists a unique maximal solution -y :
J = R" of the ODE

v =AMy +b(t),  with  y(to) = 0.
Lemma 5.22 (Gronwall). Let a < b and v, A : [a,b] — R continuous. Assume
that v is differentiable in (a,b) and that
V() <A@)(E) Ve (a,b).
Then

u(t) < u(a) exp ( / t A(s)ds) .

Definition 5.23 (The propagator of a non-autonomous, homogeneous linear
system).
Let J C R open and A : J — L(R™,R") continuous. For fixed ¢, € J we define
the maps

O, R" - R, x> g (t) VEET (5.2)
for each t € J, where 7., : J — R” the solution to v/ = A - v with initial data
Yo (to) = o and call it the flow map or the propagator.

Theorem 5.24. &, : R" — R" from Eq. (5.2) is a linear isomorphism.
We hence get that the solutions {y € C1(J,R") | v/ = A(t)y} form a n-
dimensional subspace of C'*(J,R").

Theorem 5.25 (Variation of constants). Let ®; : R™ — R™ be the propagator of
a homogeneous linear system v = A(t)y and b : J — R™ continuous. Then the
solution of the inhomogeneous equation:

Y =AMy +u()  with (o) = o
1
t

v(t) = P <IB0 + /‘Ps_lb(s) ds> .

to

This approach is called the variation of constants.
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