CHAPTER 6

Measure and integration theory

1. Idea of the Riemann Integral: Approximate f by "stair functions", i.e.
decompose the domain into intervals (rectangles, cubes, ...) and use

g(l‘) = Z Qi Xaz,ai11] (.T)
i=1

where for A C R the characteristic function of A is defined:

XA(ZL‘):{(l] i;ﬁ

The integral of a stair function is:
n
/g(x)da: = Zai(ai+1 —a;)
i=1

. Idea of the Lebesgue integral: Decompose the range of the function into
intervals [a;, a;+1) and approximate by "simple functions"

g(x) = aixa,(@)
i=1

e.g. A; = [ (Jay, aiy1)) (not interval in general).
The integral of a simple function is given by:

/g(x) de = Z a(A;)
i=1

where A(4;) is the "length" of A; (area, volume, measure).

Example 6.1. f(z) = xgn,1)(z) is not Rieman integrable, but it is Lebesgue
integrable:

1
/f(:n)dx — 1 AQ@N[0,1]) 40 A0, 1\Q) = 0
0

41
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Remark 6.2. Two advantages of the Lebesgue integral:

1.

There are more integrable functions, meaning spaces of Lebesgue integrable
functions are complete.

The Lebesgue integral can be defined on all spaces where one can define a
measure A (not only on R or R™).

Basics of measure theory

In 1924 Banach and Tarski managed to prove that there exists no volume map
vol : P(R?) — [0, 00) such that

1.

2.

3.

vol() = 0, vol([0,1]?) =1
X1,..., X}, € P(R3) pairwise disjoint, then
k

k
vol( Jx0) = vel(xy)

i=1
Invariant under transformations. Let v € R®, A € O(3), X € R3, then

vol{Az+v : € X}) =:vol(A- X +v) = vol(X)

To circumvent this problem og-algebras and measure theory was created.

Definition 6.3 (o-algebra).
A family A C P(X) of subsets of a set X is called o-algebra, if

1.

2.

3.

feA
Ae A = AeA

A, €A forkeN = UAkE.A
k=1

The elements of A are called the A-measurable sets.

Proposition 6.4. Let A be a o-algebra on X. Then

1.

XeA

2. Ae AforkeN = ﬂAkEA
k=1

3. ABeA = A\BeA
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Example 6.5. 1. P(X) and {0, X} are o-algebras on X.

2. If Aj,j €I are, o-algebras on X, sois ) A4;.
Jel

Definition 6.6 (Generating system).
Let F C P(X). Then the o-algebra generated by F is:

Ar= () B

B is o-alg.
FCB

Any F C P(X) that generates A is called generating system for A.

Definition 6.7 (Borel o-algebra).
Let (X, T) be a topological space. Then the o-algebra

Ar =B
generated by the topology is called the Borel o-algebra on X.

Definition 6.8 (Measure).
Let A C P(X) be a g-algebra. A map p: A — [0, 00] is called a measure, if

L u(@ =0

2. For pairwise disjoint sets A € A, k € N,
,u( U Ak> = Z w(Ag) (o-additivity)
k=1 k=1

We further call p

1. a finite measure, u(X) < oo,

o0
2. a o-finite measure, if there exists a decomposition X = (J Ay such that

k=1
p(Ag) < oo Vk.

The pair (X,.A) is called a measurable space, the triple (X, A, u) is called a
measure space.

Example 6.9. Let X be a set and xp € X. Then
|A| if A is finite

] "counting measure"
oo otherwise

v:P(X)—[0,00], A v(A)= {

and

1 ifzge A
dzo : P(X) = [0,00], A §g0(A) = 1o . "Dirac measure at xp”
0 otherwise

are measures.
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Proposition 6.10. Let u be a measure on (X, A) and A,B € A. Then
n(AU B) + n(ANB) = p(A) + pu(B)
and if AC B
uw(B) = u(A) + u(B\A) = u(A) < u(B).  monotony
For Aje A, jeN,
u( U Aj) < Z 1(A;) sub-additivity
j=1 j=1
and if Aj - Aj+1 Vj, then

Jj—o0

lim p(4;) = po( U 4;)
j=1

Definition 6.11 (Measurable function and the push-forward of a measure).
Let (X,A) and (Y,C) be measure spaces. A map f : X — Y is called A-C-
measurable, if

cec = flHo)eA
If v is a measure on (X,.A) then

ffu:C—10,00], Cr fu(C)=p(f1(C)
is called its push-forward under f.

Remark 6.12 (Terminology from probability theory). A measure space (X, A, i)
with p(X) =1 is called a probability space. Then the elements A € A are called
events and p(A) the probability of the event. Measurable functions f : X —
Y, (Y,C) a measurable space, are called random wvariables and the probability
measure f*u is called the distribution of f.

Theorem 6.13 (Lebesgue measure). There is a unique measure A on (R™, B) that
is translation invariant (i.e. A(A+ ) = AM(A), YA € BYx € R") and normalised
to A((0,1)™) = 1. It is called the Lebesgue-Borel measure and its completion is
called the Lebesque measure.

Basics of integration theory

Definition 6.14 (Simple function).
A function g : X — [—00,00] is called simple, if g(X) = {a1,...,ax} is finite,
ie.

k
g(x) = Z%’XA]- () with A; N A; =0 for i # j
j=1
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Definition 6.15 (Integral of non-negative measurable functions).
Let (X, A, ) be a measure space and ¢ : X — [0, 00| a simple and measurable,

then )
/ng = au(4y).
X i=1

For a measurable function f: X — [0, o0]

/fd;z = sup { /gd,u ‘ g : X — [0, 00] simple, measurable and g < f} .
X X

Definition 6.16 (Integral of measurable functions).
A measurable function f: X — [—o00, 00| is integrable, if for fy = max{f,0} and
f— = max{—f,0} it holds that

/f+d,u<oo /f_d,u<oo.

[ran= [ eau= [ 1au.

Proposition 6.17. Let f,g: X — R be integrable and oo € R. Then

Then

1. [afdp=aof fdu
2. [(f+9)du= [ fdu+ [gdpu
3. | [ 1| < J1f1d

4. f<g =[fdu< [gdu

Theorem 6.18 (Beppo-Levi, Monotone convergence). Let f, : X — [0,00]
measurable and f, < fn+1 for alln € N. Let f := lim f, (pointwise), then
n—oo

Jim fnduz/fdu
Corollary 6.19 (Fatou’s lemma). Let f,, : X — [0,00] be measurable. Then
o < Tim
| imint gt <t [ o

Definition 6.20 (Almost everywhere).
We say that a local property holds almost everywhere with respect to a measure
pon X, if it holds for all z € A C X and

u(X\4) =0,

i.e. if it fails to hold a in a null set only.
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Example 6.21. 1. Almost every real number is irrational with respect to
Lebesgue’s measure on R.

2. Let f: X — [0,00] be measurable. Then

/ fdu=0 <« f =0 almost everywhere
X

3. Changing an integrable function f on a null set does not change [ f dpu.
4. For integrable functions we do not include +o0 into the range anymore.

Remark 6.22. 1. Every Rieman integrable function f : [a,b] — R is also
Lebesgue integrable and the integrals coincide.

2. A function f: X — C is integrable, if | f| is integrable and

/fd,u:/Refd,u—l—z'/Imfdu

3. Analogously for f: X — W (W-finite dimensional).

4. For f: X — W, W a Banach space, the generalisation is called the Bochner
integral.

Definition 6.23 (LP-spaces).
Let (X, A, 1) be a measure space and 1 < p < co. We define the vector space

LP(X,pn) ={f:X — R | fis measurable and |f|” is integrable}

1l = (/medu)” <.

Moreover, LP(X, u) = LP(X, u)/ ~ with respect to the equivalence relation

as well as

f~g <« f=g almost everywhere.

Definition 6.24 (L* and the essential supremum).
Let (X, A, 1) be a measure space. For measurable f : X — R we define

| fllLe = inf {O <A<oo|p (\f|_1(()\, oo})) = 0} =:esssup |f|.
Using this definition one can define
LX,u) ={f:X — R | f measurable and || f||p~ < oo}

and
L(X, ) = £2(X, 1)/ ~ .
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Remark 6.25. Tt is almost immediate to generalize LP spaces to complex-valued
(or vector-valued) measurable functions.

Theorem 6.26 (Completeness of LP-spaces). Let (X, A, 1) be a measure space
and 1 < p < oo. Then (LP(X,p),| -|/z,) is a Banach space.

Theorem 6.27 (Holder inequality). Let f,g : X — R be measurable and 1 <
p,q < 0o such that % + % =1 (conjugated exponents) where é = 0. Then

If gl < N llzv - llglle
Corollary 6.28. Let p be a finite measure on X. Then,
LP(X, p) € LU(X, p)
foralll < g<p<oo.

Remark 6.29. For p = ¢ = 2 this is the Cauchy-Schwarz inequality on the Hilbert
space L2. Hence for f,g € L?> = fg € L', since

‘/fgdu

:|<fvg|f7g>L2‘

< / Foldu < £z - llglze

Theorem 6.30 (Minkowski inequality). Let f,g : X — R be measurable and
1<p<oo. Then
1f +9gllp < 1Fllp + llgllp -

Definition 6.31 (Convergence of measurable functions).
Let (X, p) be a measure space. A sequence (f,,) of real-valued measurable func-
tions

1. converges to f pointwise if

Ve>0Vx € X IN., €N st. Vn> N, : |f(x) — fulz) <e.

2. converges to f uniformly if

Ve>03IN. €N st. Vee XVn> N, : |f(zx)— fulz)| <e.

3. converges to f almost everywhere if there is a set Y € X with u(Y) =0
such that f, — f pointwise in X \ Y.

4. converges to f almost uniformly if there is a set Y C X with u(Y) =0
such that f, — f uniformly in X \ Y.

5. converges to f in in LP-norm if

Ve>03IN. €N st. Yn>N. @ ||f— falle <e.
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6. converges to f in measure if

Ve >0 nlLr{:ou({xEX s f(x) = falz)| > e}) =0.

Since we identify functions that coincide almost everywhere, we only care
about the notions 3-6 of convergence. By definition it is clear that almost uniform
convergence implies almost everywhere convergence. It is also not hard to show
that LP convergence implies convergence in measure for any 1 < p < oco. For the
rest of the section let (X, ) be a measure space and let (f,) be a sequence of
real-valued measurable functions.

Theorem 6.32 (Uniform - LP). Let pu be a finite measure and suppose that ( fr,)

is a sequence in LP(X, p) which converges uniformly to a measurable function f.
Then, f € LP(X,u) and
fo—f inLP.

Theorem 6.33 (Almost everywhere - LP). Suppose that (fy) is a sequence in
LP(X, p) which converges almost everywhere to a measurable function f. If there
exists a function g € LP(X, p) such that

|fn(z)] <|g(z)] VneN and ae xzeX

then f € LP(X, ) and
fo— [ in LP.

Corollary 6.34. Let u be a finite measure on X and suppose that (fy) is a
sequence in LP(X, u) which converges almost everywhere to a measurable function
f. Suppose that there is a real number M > 0 such that

[f(@)| <M VzeXmnel.

Then, f € LP(X, ) and
fo—f in LP.

Theorem 6.35 (Measure - LP). Suppose that (f,) is a sequence in LP(X, )
which converges in measure to a measurable function f. If there exists a function
g € LP(X, n) such that

[fn(@)] <|g(x)] YneN and ae zeX

then f € LP(X, p) and
fon— [ in LP.

Theorem 6.36 (Almost uniform - Measure). If f,, — f almost uniformly, then
it also converges in measure. Conversely, if f, — f in measure, then there exists
a subsequence that it converges in almost uniformly to the same limit.
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Theorem 6.37 (Almost everywhere - almost uniformly - measure convergence).
Let v be a finite measure and suppose that f, — f almost everywhere. Then,
fn = f almost uniformly and in measure.

We summarize all these convergence types and their interplay in the following
diagrams. Solid arrow means that the convergence in the tail implies convergence
in the nose. Dashed arrow means that convergence in the tail implies subconver-
gence (convergence through a subsequence) in the nose. The absence of arrow
means a counter example can be found. Whenever LP convergence is involved, it
is understood that the functions are in LP.

General measure space

Finite measure space

Dominated convergence
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