Exercise Sheet 3: Topology II

- **1.** Let $f: X \to Y$ be a map between topological spaces and assume that it is continuous at $x \in X$. Prove that it is also sequentially continuous at x.
- **2.** Show that a map $f: X \to Y$ between metric spaces X, Y is continuous at $x \in X$, if and only if

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \quad f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)) .$$

- **3.** Let $K \subset X$ be a compact subset of a topological space. Show that any sequence in K has a cluster point in K.
- 4. Show that any compact subset of a Hausdorff space is closed.
- 5. Find an example of
 - (i) a sequence of maps that converges pointwise but not uniformly.
 - (ii) a connected but not path connected topological space.