Exercise Sheet 4: Differential Calculus

1. Let $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ and $F: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$f(x) = ||x||_2, \quad F(x) = \lambda x - x_0$$

for some $\lambda \in \mathbb{R}$ and $x_0 \in \mathbb{R}^3$. Compute ∇f , $\nabla^2 f$, Δf , div F and curl F.

2. Let $f: V \to W$ be a map between finite dimensional normed spaces and fix $v_0 \in V$. Show that there exists at most one linear map $L \in \mathcal{L}(V, W)$ such that

$$\lim_{v \to 0} \frac{f(v_0 + v) - f(v_0) - L(v)}{\|v\|_V} = 0.$$

3. Let V, W be finite dimensional real normed vector spaces. For $f \in \mathcal{C}^1(G, W)$, prove that

$$\partial_v f(x) = Df|_x v \quad \forall v \in v, \ \forall x \in G.$$

4. Given X,Y are topological spaces with Y Hausdorff, let there be $f,g:X\to Y$ continuous. Prove that if $A\subseteq X$ is dense (in X), then

$$(f|_A = g|_A) \iff (f = g).$$