FOUNDATIONS OF QUANTUM MECHANICS: ASSIGNMENT 2

Exercise 5: Essay question: Explain the concept of reductionism. (You can use Newtonian mechanics as an example.)

Exercise 6: Unitary operators.

(a) For any vector $\mathbf{a} \in \mathbb{R}^3$, the translation operator $T_{\mathbf{a}}$ is defined on $L^2(\mathbb{R}^{3N})$ by

$$(T_{\boldsymbol{a}}\psi)(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N) = \psi(\boldsymbol{x}_1-\boldsymbol{a},\ldots,\boldsymbol{x}_N-\boldsymbol{a}). \tag{1}$$

It shifts the wave function by \boldsymbol{a} in every \boldsymbol{x}_i . Show that $T_{\boldsymbol{a}}$ is unitary.

(b) For any rotation matrix $R \in SO(3)$, the rotation operator U_R is defined on $L^2(\mathbb{R}^{3N})$ by

$$(U_R \psi)(\boldsymbol{x}_1, \dots, \boldsymbol{x}_N) = \psi(R^{-1} \boldsymbol{x}_1, \dots, R^{-1} \boldsymbol{x}_N).$$
(2)

It rotates the wave function according to R in every x_i . Show that U_R is unitary.

Exercise 7: Orthonormal system.

For $n \in \mathbb{Z}$, let the function $\varphi_n : [-\pi, \pi] \to \mathbb{C}$ be defined by

$$\varphi_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx} \,. \tag{3}$$

Show that they form an orthonormal system in $L^2([-\pi,\pi])$, i.e., that

$$\langle \varphi_n | \varphi_m \rangle = \delta_{nm} = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$$
 (4)

with

$$\langle \psi | \phi \rangle = \int_{-\pi}^{\pi} \psi(x)^* \, \phi(x) \, dx \,. \tag{5}$$

Exercise 8: Dense subspace.

The space $\ell^2 = \{(x_1, x_2, \ldots) : x_n \in \mathbb{C}, \sum |x_n|^2 < \infty\}$ of all square-summable sequences is a Hilbert space with inner product

$$\langle x|y\rangle = \sum_{n=1}^{\infty} x_n^* y_n \,. \tag{6}$$

A subset S of a Hilbert space \mathscr{H} is called *dense* if for every $\psi \in \mathscr{H}$ and $\varepsilon > 0$ there is $\phi \in S$ with $\|\psi - \phi\| < \varepsilon$. (For example, the set \mathbb{Q} of rational numbers is dense in \mathbb{R} .) Let S be the subspace of ℓ^2 consisting of all sequences (x_1, x_2, \ldots) with only finitely many nonzero entries.

- (a) Show that S is dense in ℓ^2 .
- (b) Show that in a finite-dimensional Hilbert space (that is, without loss of generality, in \mathbb{C}^n), the only dense subspace is the full space \mathbb{C}^n .

Hand in: by Saturday October 25, 2025, at noon via urm.math.uni-tuebingen.de

Reading assignment due Thursday October 30, 2025: First three pages of J. Bell: De Broglie-Bohm, delayed-choice double-slit experiment, and density matrix. *International Journal of Quantum Chemistry* **14**: 155–159 (1980)