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Abstract

Modular functions have many applications ranging from number theory and

group theory to string theory. We first consider modular functions for SL(2,Z) and

show that the j-function generates the field of modular functions. Then we look

at the congruence subgroups Γ(N) and Γ0(N) and find the equivalence classes of

cusps. For Γ0(p), where p is a prime, we calculate the fundamental region. We

analyse the behaviour of some Hauptmoduln for Γ0(N) at the cusps. Then we

consider two congruence subgroups Γ(1,0) and Γ(1,1) conjugate to Γ0(2) and describe

corresponding Hauptmoduln. Finally, for modular functions for Γ(1,1) with only

nonnegative real coefficients in the Fourier expansion we show that the pole at

infinity already gives a bound for poles at other cusps. This makes it possible to

write holomorphic modular functions with nonnegative real coefficients as rational

functions of the Hauptmodul just using the first few coefficients of the Fourier

expansion.
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1 Introduction

Modular functions are an excellent example for how different mathematical areas are

connected to each other. To study modular functions, one needs complex analysis

and some elementary algebra. But the theory of modular functions leads to amazing

results ranging from group theory, sphere packings to string theory. This diversity

of applications shows that modular functions are important even in current research

and certainly worth studying.

Modular functions are meromorphic functions which have a certain symmetry

property. In conformal field theory, so-called partition functions can have these

symmetries and then they are modular functions (Di Francesco et al.; 1997). A

very special modular function, the j-function, is related to the monster group, the

largest sporadic simple group. The coefficients in the Fourier expansion of j are

connected to the dimensions of the irreducible representations of the monster group

(Borcherds; 1992).

As it turns out, the j-function generates the field of modular functions, i.e.

every modular function can be written as rational function of j. This leads to the

useful principle that finitely many coefficients are enough to determine a modular

function uniquely. Using this principle, one can prove number-theoretical identities

by comparing the first few terms of the Fourier expansions (Bruinier et al.; 2008).

In Section 2 we will introduce the most important concepts, which we will gen-

eralise throughout the thesis. Then we will study the j-function in Section 3, where

we will see that the j-function generates all modular functions. We then generalise

the notion of modular functions in Section 4 by loosening the symmetry conditions

and considering functions invariant under genus 0 congruence subgroups. It turns

out that these more general modular functions, sometimes also called automorphic

functions, can be generated again by one single function. We study some examples

of these generating functions, which are also called Hauptmoduln, and determine

their zeros and singularities. In Section 5 we look at symmetry groups showing up in

conformal field theory. Then again we look at modular functions symmetric under

these groups and find generating functions. For one of these groups we find that

modular functions with only nonnegative real coefficients in their Fourier expansion

have a very nice property. The behaviour of the function at infinity already restricts

its behaviour on the whole real axis. If the function is holomorphic on the upper half

plane, this allows us to write the function as a rational function of the Hauptmodul,

when we only know the behaviour at infinity and the first few coefficients of the

Fourier expansion.

I want to thank Prof. Dr. Christoph Keller for taking the time to supervise my

work and for his helpful explanations and ideas.

2 Preliminaries
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2.1 Modular Functions

Let H = {z ∈ C | =(z) > 0} be the upper half plane. We can define an action of the

special linear group SL(2,R) on H in the following way: For γ =
(
a b
c d

)
∈ SL(2,R),

let

γ(z) =

(
a b

c d

)
(z) =

az + b

cz + d

By direct calculation one can verify that this is in fact a well-defined group action.

Let Γ be a subgroup of SL(2,R). The group action induces an equivalence

relation on H.

Definition 2.1. Two points z1, z2 ∈ H are Γ-equivalent if and only if there is a

γ ∈ Γ such that γ(z1) = z2.

Definition 2.2. A fundamental domain for Γ is an open subset F ⊂ H such that

no two points in F are Γ-equivalent and every point in H is Γ-equivalent to some

point in F .

We will mainly consider the subgroup

SL(2,Z) =

{(
a b

c d

)
∈ Z2×2 | ad− bc = 1

}

The group of transformations on H induced by SL(2,Z) is often referred to as the

full modular group. The full modular group is generated by the transformations

S(τ) = −1/τ and T (τ) = τ + 1 (Apostol; 1990).

Lemma 2.3. (Apostol; 1990) For SL(2,Z) a fundamental domain is given by

F =

{
z ∈ H | |z| > 1, |<(z)| < 1

2

}
Definition 2.4. A function f : H → C is a modular function if it satisfies the

following three conditions:

(i) f is meromorphic

(ii) f is invariant under SL(2,Z), i.e. f(γ(τ)) = f(τ) for all γ ∈ SL(2,Z) and

τ ∈ H

(iii) The Fourier expansion of f is of the form

f(τ) =
∞∑

n=−m
ane

2πinτ

Remark 2.5. Condition (ii) applied for γ = ( 1 1
0 1 ) gives that f(τ +1) = f(τ). Thus

f is a meromorphic function of q = e2πiτ . Because τ lies in the upper half-plane, q

is a complex number with 0 < |q| < 1. The Fourier expansion of f is now given by
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its Laurent expansion in q around 0:

f(τ) =

∞∑
n=−∞

anq
n

Condition (iii) asserts that f(q) is meromorphic at q = 0.

Remark 2.6. A modular function has finitely many poles in the fundamental do-

main.

Proof. We prove this by contradiction. Suppose f is a modular function with in-

finitely many poles in F . Because f is meromorphic, its poles are isolated. There-

fore, the set of poles must be unbounded and we can find a sequence of poles (tk)k∈N

with limk→∞=(tk) = ∞. Then qk = e2πiτk are poles of the meromorphic function

f(q). Since the qk converge to 0 for k → ∞, f(q) is not meromophic at q = 0. By

Remark 2.5 this contradicts condition (iii) of the definition of a modular function.

Thus, every modular function can only have finitely many poles in F .

Lemma 2.7. (Apostol; 1990) Every bounded modular function is constant.

2.2 Lattices

Definition 2.8. A set L ⊂ C is a lattice if it is of the form

L = [z1, z2] = {mz1 + nz2 | m,n ∈ Z}

for two R-linearly independent complex numbers z1 and z2.

Definition 2.9. Two lattices L and L′ are homothetic if there is a λ ∈ C\{0} such

that L = λL′.

Definition 2.10. Let L be a lattice. For n ≥ 3 the Eisenstein series of order n for

L is defined as

Gn(L) =
∑

ω∈L\{0}

1

ωn
.

It can be shown that the Eisenstein series converges absolutely for every L and

n ≥ 3 (Cox; 2013). Two important series are

g2(L) = 60G4(L) = 60
∑

ω∈L\{0}

1

ω4

and

g3(L) = 140G6(L) = 140
∑

ω∈L\{0}

1

ω6
.

Definition 2.11. Let L be a lattice. The Weierstrass ℘-function is defined by

℘(z, L) =
1

z2
+

∑
ω∈L\{0}

{
1

(z − ω)2
− 1

ω2

}
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for all z ∈ C.

Lemma 2.12. (Cox; 2013) The set of singularities of ℘(z, L) consists of poles at

the lattice points of L.

Lemma 2.13. (Cox; 2013) The Laurent expansion of the Weierstrass ℘-function

at the origin can be written as

℘(z, L) =
1

z2
+
∞∑
n=1

pn(g2(L), g3(L))z2n

where pn are polynomials independent of L.

3 The j-Function

Definition 3.1. For a lattice L the j-invariant is the complex number

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2

From this we define the j-function as the map j : H→ C given by j(τ) := j([1, τ ]).

First, we have to check that the j-invariant is well defined.

Lemma 3.2. (Apostol; 1990) For every lattice ∆(L) = g2(L)3 − 27g3(L)2 6= 0.

Proof sketch. Let L = [ω1, ω2] be a lattice. Consider the polynomial p(x) = 4x3 −
g2(L)x − g3(L). Its discriminant is 16 · ∆(L). In Apostol (1990) it is shown that

p(x) has three distinct roots. Thus, the discriminant of p(x) and hence also ∆(L)

are non-zero.

The aim of this Section is to study different properties of the j-function. One of

the main results will be the following theorem:

Theorem 3.3. (Scherer; 2010) The j-function is a bijection between H/SL(2,Z)

and C.

The proof of this theorem is split into Lemma 3.5 and Lemma 3.10. First, we

need more preparation.

Lemma 3.4. (Cox; 2013) Two lattices L and L′ in C are homothetic if and only if

j(L) = j(L′).

Proof. (⇒) Let L and L′ be homothetic, i.e. L′ = λL for some λ ∈ C \ {0}.
From the definitions of g2 and g3 we see that g2(L

′) = g2(λL) = λ−4g2(L) and

g3(L
′) = g3(λL) = λ−6g3(L). Calculating the j-invariant we get

j(L′) =
1728g2(L

′)3

g2(L′)3 − 27g3(L′)2
=

1728λ−12g2(L)3

λ−12g2(L)3 − 27λ−12g3(L)2
= j(L)

5



(⇐) Let j(L) = j(L′). We begin by proving the following claim:

Claim: There is a λ ∈ C \ {0} such that g2(L
′) = λ−4g2(L) and g3(L

′) = λ−6g3(L).

We distinguish two cases.

Case 1: g2(L
′) = 0

By Lemma 3.2 ∆(L′) = g2(L
′)3 − 27g3(L

′)2 is nonzero, hence g3(L
′) 6= 0. Choose

λ ∈ C such that λ6 = g3(L)/g3(L
′). We have that

0 =
1728g2(L

′)3

g2(L′)3 − 27g3(L′)2
= j(L′) = j(L) =

1728g2(L)3

g2(L)3 − 27g3(L)2

Therefore, g2(L) = 0 and λ 6= 0 because otherwise ∆(L) would be zero. Hence,

g2(L
′) = 0 = λ−4g2(L).

Case 2: g2(L
′) 6= 0

Choose λ ∈ C such that λ4 = g2(L)/g2(L
′). From j(L′) = j(L) we get

g2(L
′)3

g2(L′)3 − 27g3(L′)2
=

g2(L)3

g2(L)3 − 27g3(L)2
=

λ12g2(L
′)3

λ12g2(L′)3 − 27g3(L)2

Dividing by g2(L
′)3 and multiplying by the denominators we get

λ12g2(L
′)3 − 27g3(L)2 = λ12g2(L

′)3 − 27λ12g3(L
′)2

Therefore, g3(L) = ±λ6g3(L′). If there is a minus, we replace λ by iλ. If λ was

zero, g3(L), g2(L) and hence also ∆(L) would be zero. Thus, λ 6= 0 and we get

λ−6g3(L) = g3(L
′) and have proven the claim.

Combining the claim with the definitions of g2 and g3 we get g2(L
′) = λ−4g2(L) =

g2(λL) and g3(L
′) = λ−6g3(L) = g3(λL). Now we look at the Laurent expansion of

the Weierstrass ℘-function around 0 (Lemma 2.13):

℘(z, L′) =
1

z2
+
∞∑
n=1

pn(g2(L
′), g3(L

′))z2n =
1

z2
+
∞∑
n=1

pn(g2(λL), g3(λL))z2n = ℘(z, λL)

Both functions ℘(z, L′) and ℘(z, λL) are holomorphic on C\{L′∪λL}. The Laurent

expansion converges on a deleted neighbourhood U ⊂ C \ {L′ ∪ λL} of 0. The

two functions therefore agree on U and by the identity theorem for holomorphic

functions they agree on all of C \ {L′ ∪ λL}. Thus, ℘(z, L′) and ℘(z, λL) have the

same poles. By Lemma 2.12 the set of poles is exactly L′ = λL. Therefore, L and

L′ are homothetic.

Lemma 3.5. (Cox; 2013) Let τ, τ ′ ∈ H. Then, j(τ) = j(τ ′) if and only if τ ′ = γ(τ)

for some γ ∈ SL(2,Z).

Proof. (⇒) Let τ, τ ′ ∈ H such that j(τ) = j(τ ′). From the definition of j(τ) and

Lemma 3.4 it follows that [1, τ ] and [1, τ ′] are homothetic, i.e. [1, τ ′] = [λ, λτ ] for

some λ ∈ C \ {0}. Therefore, there are r, s, p, q ∈ Z such that λ = rτ ′ + s and
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λτ = pτ ′ + q or (
λτ

λ

)
=

(
p q

r s

)(
τ ′

1

)
Dividing the two equations, we get

τ =
pτ ′ + q

rτ ′ + s
=

(
p q

r s

)(
τ ′
)

We need to show that det ( p qr s ) = 1.

Analogously, we find a, b, c, d ∈ Z such that(
τ ′

1

)
=

(
aλτ + bλ

cλτ + dλ

)
=

(
a b

c d

)(
λτ

λ

)

It follows that (
τ ′

1

)
=

(
a′ b′

c′ d′

)(
τ ′

1

)

where
(
a′ b′

c′ d′

)
:=
(
a b
c d

)
( p qr s ). We have that a′τ ′+ b′ = τ ′ and thus a′+ b′

τ ′ = 1. Since

a′, b′ ∈ Z and τ ′ /∈ R, b′ = 0 and, therefore, a′ = 1. Similarly, c′τ ′ + d′ = 1 implies

c′ = 0 and d′ = 1. Thus,

det

(
a′ b′

c′ d′

)
= 1 = det

(
a b

c d

)
det

(
p q

r s

)

The right hand side is the product of two integers. They must be equal to ±1. We

now just have to show that det ( p qr s ) > 0. We write τ ′ = x + yi for some x, y ∈ R.

Then,

0 < =(τ) = =
(
pτ ′ + q

rτ ′ + s

)
= =

(
pr(x2 + y2) + qr(x− yi) + ps(x+ yi) + sq

|rτ ′ + s|2

)
=
psy − qry
|rτ ′ + s|2

=
=(τ ′)(ps− qr)
|rτ ′ + s|2

Since =(τ ′) > 0, we get 0 < ps− qr = det ( p qr s ). Thus, ( p qr s ) ∈ SL(2,Z).

(⇐) Let τ ′ = ( p qr s ) (τ) for some ( p qr s ) ∈ SL(2,Z). If we show that [1, τ ′] is

homothetic to [1, τ ], the result folllows from Lemma 3.4. Let λ = rτ + s. Then,

λ[1, τ ′] = (rτ + s)

[
1,
pτ + q

rτ + s

]
= [rτ + s, pτ + q] ⊂ [1, τ ]

We have

−q(rτ + s) + s(pτ + q) = τ

p(rτ + s)− r(pτ + q) = 1
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Thus, [1, τ ] ⊂ λ[1, τ ′]. Together we have [1, τ ] = λ[1, τ ′].

For τ ∈ H we define ∆(τ) := ∆([1, τ ]).

Corollary 3.6. For all
(
a b
c d

)
∈ SL(2,Z)

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ)

Proof. From the definition of ∆ it follows that ∆(λL) = λ−12∆(L) for all lattices L

and λ ∈ C \ {0}. Let τ ′ = aτ+b
cτ+d . In the proof of Lemma 3.5 we showed that [1, τ ] =

λ[1, τ ′] for λ = cτ + d. Thus, ∆(τ) = ∆([1, τ ]) = λ−12∆([1, τ ′]) = λ−12∆(τ ′).

We will take the following two results as given.

Lemma 3.7. (Apostol; 1990; Cox; 2013) The j-function is holomorphic on H.

Lemma 3.8. (Apostol; 1990; Cox; 2013) The Fourier expansion of the j-function

is

j(τ) =
1

q
+

∞∑
n=0

cnq
n

where q = e2πiτ and cn ∈ Z.

Remark 3.9. Lemma 3.5 together with Lemma 3.7 and Lemma 3.8 implies that

j(τ) is a modular function. Moreover, we can view j as an injective map from

H/SL(2,Z) to C.

Lemma 3.10. (Cox; 2013) The j-function is surjective, i.e. j(H) = C.

Proof. Since j is an injective map from the fundamental domain F to C and F
contains more than one point, j is certainly not constant. Moreover, j(τ) is holo-

morphic on H. By the open mapping theorem, the image j(H) is open in C. If we

prove that j(H) is closed, it follows that j is surjective, i.e. j(H) = C because C is

connected.

Let (j(tk))k∈N be a sequence in j(H) converging to some z ∈ C. Because j is

invariant under SL(2,Z), we can assume that the tk lie in F . Therefore,

∀k ∈ N : |<(tk)| <
1

2
and |=(tk)| ≥

√
3

2

Suppose that =(tk) is unbounded. For a subsequence with =(tki) going to infinity, it

follows form Lemma 3.8 that limi→∞ j(tki) = ∞. This contradicts the assumption

that limk→∞ j(tk) = z. Hence, =(tk) is bounded and the tk are contained in a

compact set K ⊂ H. Since K is compact and j is continuous, j(K) is compact and

thus closed. Therefore, limk→∞ j(tk) = z ∈ j(K) = j(K). Because j(K) ⊂ j(H), it

follows that z ∈ j(H). Thus j(H) is closed.

Lemma 3.11. (Scherer; 2010) Every holomorphic modular function for SL(2,Z)

can be written as a polynomial in j(τ).
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Proof. Let f(τ) be such a function and let

f(τ) =
∞∑

n=−m
anq

n, m ∈ Z≥0

be its q-expansion. The q-expansion of j(τ) has only one negative q-power term, that

is q−1. Thus, we can find a polynomial p such that f(τ)− p(j(τ)) has no negative

q-powers. (We can do this inductively. Let pm = a−m. Then f(τ) − pmj(τ)m =∑∞
n=−m+1 a

(1)
n qn for some a

(1)
n ∈ C. Repeat this procedure until p1 is defined.

Then p(z) =
∑m

n=1 pnz
n.) Then f(τ) − p(j(τ)) is bounded on H, since f and

j are holomorphic. Lemma 2.7 implies that f(τ) − p(j(τ)) is constant and thus

f(τ) = c+ p(j(τ)) for a c ∈ C.

Theorem 3.12. (Apostol; 1990) Every modular function is a rational function of

the j-function.

Proof. Let f(τ) be a modular function for SL(2,Z). By Remark 2.6, f has a finite

number of poles in F . Let {τk}1≤k≤n be the poles of f with orders mk. Because

j is holomorphic at τk, the zero of j(τ) − j(τk) in tk has at least order 1. Hence,

f(τ)(j(τ)− j(τk))mk is holomorphic at τk. Thus,

f(τ)
n∏
k=1

(j(τ)− j(τk))mk

is holomorphic on H. Let q(j(τ)) :=
∏n
k=1 (j(τ)− j(τk))mk . By Lemma 3.11 we

have q(j(τ))f(τ) = p(j(τ)) and thus

f(τ) =
p(j(τ))

q(j(τ))

is a rational function in j(τ).

Remark 3.13. Let f be a modular function with q-expansion

f(τ) =
∞∑

n=−m
anq

n.

Suppose f is holomorphic on F except for n poles of order mk at τk ∈ F . Then

already finitely many an determine f uniquely. More precisely, it is sufficient to

know the first m+
∑n

k=1mk + 1 coefficients.

Proof. First, suppose that f is holomorphic on H. Using the construction given in

the proof of Lemma 3.11, we can find a polynomial p(z) =
∑m

n=1 pnz
n such that

f(τ) = c+
m∑
n=1

pnj(τ)n.
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To determine p, we only used the values of a−m, a−m+1, ..., a−1 and c is determined

by a0.

If f is holomorphic except for n poles of order mk at tk ∈ F , let

r(τ) =
n∏
k=1

(j(τ)− j(τk))mk .

Since j has a pole of order one in q, r(τ) =
∑∞

n=−M bnq
n with M :=

∑n
k=1mk. Now,

f(τ)r(τ) =
∑∞

n=−M−m cnq
n is holomorphic on H. By the first case, we need the co-

efficients c−M−m, ..., c1, c0 to determine f(τ)r(τ). These coefficients are determined

by a−m, a−m+1, ..., aM and b−M , .., bm. But the bk only depend on the location and

order of the poles, not on f itself. Hence, if we know the first m+1+M coefficients

ak, the product f(τ)r(τ) is uniquely determined and so is f .

4 Congruence Subgroups

We write (a, b) or gcd(a, b) for the greatest common divisor of a and b and we follow

the convention that ±1/0 =∞.

Definition 4.1. For a positive integer N we define Γ(N), Γ0(N) and Γ1(N) as

Γ(N) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣∣∣
(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}

Γ0(N) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣∣∣ c ≡ 0 (mod N)

}

Γ1(N)

{(
a b

c d

)
∈ SL(2,Z)

∣∣∣∣
(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}

A congruence subgroup of SL(2,Z) is a subgroup which contains Γ(N) for some N .

In particular, Γ1(N) and Γ0(N) are congruence subgroups for every N .

Definition 4.2. A cusp is an element of H∪R∪{∞} which is SL(2,Z)-equivalent

to ∞.

Lemma 4.3. The set of cusps is exactly Q ∪ {∞}.

Proof. For every γ =
(
a b
c d

)
∈ SL(2,Z) we have that γ(∞) = a

c ∈ Q ∪ {∞}.
Conversely, we can write every q ∈ Q as q = m

n for relatively prime integers m and

n. There are integers b and d such that dm − bn = (m,n) = 1. Then γ :=
(
m b
n d

)
lies in SL(2,Z) and γ(∞) = q.

For a subgroup Γ of SL(2,Z) not all cusps need to be Γ-equivalent. In this

section we will study the equivalence classes of cusps for Γ(N) and Γ0(N). Then we

will examine Γ0(p) more precisely for the case that p is prime and look at modular

functions for Γ0(N).
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4.1 Cusps under Γ(N)

Lemma 4.4. (Shimura; 1971) Let a, b, c, d be integers such that (a, b) = 1 and

(c, d)=1. Then,(
a

b

)
≡

(
c

d

)
(mod N)⇔ ∃γ ∈ Γ(N) :

(
a

b

)
= γ

(
c

d

)

Proof. (⇐) Since γ ≡ ( 1 0
0 1 ) (mod N),(
a

b

)
= γ

(
c

d

)
≡

(
c

d

)
(mod N)

(⇒) First, assume that ( cd ) = ( 1
0 ). Then a ≡ 1 (mod N) and hence 1 − a is

divisible by N . Since (a, b) = 1, we can find integers p′ and q′ such that ap′−bq′ = 1.

Now let p = p′(1 − a)/N and q = q′(1 − a)/N and γ =
(
a Nq
b 1+Np

)
. Then det(γ) =

a+ ap′(1− a)− bq′(1− a) = a+ 1− a = 1. Then γ ∈ Γ(N) and γ ( 1
0 ) = ( ab ).

In the general case, let r and s be integers such that cr + ds = 1 and σ =
(
c −s
d r

)
.

Since σ ( 1
0 ) = ( cd ) ≡ ( ab ) (mod N), we get σ−1 ( ab ) ≡ ( 1

0 ) (mod N). By the first

case, we can find a γ ∈ Γ(N) such that γ ( 1
0 ) = σ−1 ( ab ). Then ( ab ) = σγ ( 1

0 ) =

σγσ−1 ( cd ) and σγσ−1 ≡ σI2σ
−1 (mod N) ≡ I2 (mod N). Thus σγσ−1 has the

desired properties.

Lemma 4.5. If
a

b
=
pc+ qd

rc+ sd

for a, b, c, d, p, q, r, s ∈ Z with (a, b) = (c, d) = det ( p qr s ) = 1 and b 6= 0, then

( ab ) = ± ( p qr s ) ( cd ).

Proof. We get that λ ( ab ) = ( p qr s ) ( cd ) for λ = (rc + sd)/b ∈ Q. Write λ = m/n for

relatively prime integers m and n. Then,

m

(
a

b

)
= n

(
p q

r s

)(
c

d

)
(1)

We see that n | a, b because (n,m) = 1. Since (a, b) = 1, it follows that n = ±1.

Multiplying Equation 1 from left by ( p qr s )−1, we see that m | c, d because (m,n) = 1.

Since (c, d) = 1, it follows that m = ±1 and thus λ = ±1.

Theorem 4.6. (Shimura; 1971) Let z = a/b and z′ = c/d be cusps of Γ(N) written

as quotients of relatively prime integers (where ±1/0 = ∞). Then z and z′ are

Γ(N)-equivalent if and only if ±

(
a

b

)
≡

(
c

d

)
(mod N).

This gives us all equivalence classes of cusps for Γ(N).

Proof. (⇒) Take γ = ( p qr s ) ∈ Γ(N) such that γ(z′) = z. If bd = 0, we can assume

w.l.o.g. that d = 0. Then c = ±1 and γ(z′) = p/r = z. Since (p, r) | det(γ) = 1, we
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have that ( ab ) = ± ( pr ) and because γ ∈ Γ(N) we get ± ( pr ) ≡ ± ( 1
0 ) (mod N) ≡

± ( cd ) (mod N).

If bd 6= 0, we get

z =
a

b
=
pc+ qd

rc+ sd

By Lemma 4.5 we obtain ( ab ) = ± ( p qr s ) ( cd ) ≡ ± ( cd ) (mod N).

(⇐) By Lemma 4.4 there is a γ = ( p qr s ) ∈ Γ(N) such that ( p qr s ) ( cd ) = ± ( ab ). If

d = 0, we have c = ±1 and thus ( pr ) = ± ( ab ). Moreover, z′ =∞ and γ(z′) = p/r =

a/b = z. If d 6= 0, we get

γ(z′) =
pz′ + q

rz′ + s
=
pc+ qd

rc+ sd
=
a

b
= z

Therefore, z and z′ are Γ(N)-equivalent.

4.2 Cusps under Γ0(N)

Definition 4.7. Let n be a positive integer. Define ϕ(n) as the number of integers

k such that 1 ≤ k ≤ n and (k, n) = 1. This function ϕ is called Euler’s totient

function.

Definition 4.8. Let n be a positive integer. A reduced residue system modulo n is

a set R ⊂ Z such that for all r in R we have (r, n) = 1 and no two elements of R

are congruent modulo n.

A reduced residue system modulo n contains ϕ(n) elements, where ϕ is Euler’s

totient function.

Lemma 4.9. Let N be a positive integer and c ∈ Z dividing N . Then there exists

a reduced residue system Rc,N modulo (c,N/c) with (c, d) = 1 for all d in Rc,N .

Proof. Suppose d′ is relatively prime to (c,N/c). Let d := d′ + (c,N/c)
∏
p|c,p-d′ p,

where p are prime. Suppose there was a prime number p dividing (c, d). If p | d′,
then also p | (c,N/c). Since (d′, (c,N/c)) = 1, it follows that p | 1, a contradiction.

If p - d′, then p |
∏
p′|c,p′-d′ p

′ and hence also p | d − (c,N/c)
∏
p′|c,p′-d′ p

′ = d′, again

a contradiction. Therefore, (c, d) = 1 and also ((c,N/c), d) = 1. Moreover, d ≡ d′

(mod (c,N/c)). Thus if we take any reduced residue system modulo (c,N/c) and

replace all its elements d′ by the corresponding d, we obtain Rc,N .

Theorem 4.10. (Wang and Pei; 2012) Let N be a positive integer. For all c ∈ Z>0

dividing N let Rc,N be a reduced residue system modulo (c,N/c) with (c, d) = 1

for all d in Rc,N . The set M := {d/c | c ∈ Z>0, c|N, d ∈ Rc,N} contains one

representative of each equivalence class of cusps of Γ0(N). The number of these

equivalence classes is equal to

|M | =
∑
c|N

ϕ((c,N/c))

12



Proof. First, we count the elements in M . Let Mc := {d/c | d ∈ Rc,N}. Then for

c 6= c′ the sets Mc and Mc′ are disjoint. Thus, |M | =
∑

c|N |Mc| =
∑

c|N ϕ((c,N/c)).

We have to prove that (i) every cusp is Γ0(N)-equivalent to some element of M

and that (ii) no two different elements of M are Γ0(N)-equivalent. We begin by

proving (i). First let d′/c and d/c be two cusps (written as reduced fractions) such

that c | N , and d ≡ d′ (mod (c,N/c)). Then we can find a, b, a′, b′ ∈ Z such that(
a d
b c

)
and

(
a′ d′

b′ c

)
lie in SL(2,Z). Then, bd ≡ b′d′ ≡ −1 (mod (c,N/c)). Thus b ≡ b′

(mod (c,N/c)) and there are m,n ∈ Z such that b = b′ +mc+ nN/c. Let

γ =

(
a−md d

b−mc c

)(
c −d′

−b′ a′

)

Since γ is the product of two matrices with determinant one, det γ = 1. The

bottom left entry of γ is γ21 = bc−mc2− b′c = nN and thus γ ∈ Γ0(N). Moreover,

direct calculation gives γ(d′/c) = d/c and thus d′/c is Γ0(N)-equivalent to d/c.

By the definition of M , for every cusp d′/c as above, we can find a corresponding

d/c ∈M . Hence, all cusps of this form are equivalent to some element of M . Since(
1 0
N 1

)
∈ Γ0(N), we see that ∞ is equivalent to 1/N and hence to some element of

M .

Now let n/m with (n,m) = 1 be a cusp. Let c := (m,N). Then also (m,nN) = c

and hence there are α, β ∈ Z with

αm+ βnN = c. (2)

Define α′ := α + nN/c
∏
p|N,p-α p and β′ := β −m/c

∏
p|N,p-α p where p are prime.

Since α′m/c+ β′nN/c = 1, we have that (α′, β′) = 1. From Equation (2) it follows

that (αm/c, βnN/c) = 1 and thus also (α, nN/c) = 1. We find (α′, N) = 1 by the

same argument as in the proof of Lemma 4.9. Hence also (α′, β′N) = 1 and there

exists a σ ∈ Γ0(N) of the form

σ =

(
a b

β′N α′

)

Then we have

σ(n/m) =
an+ bm

β′Nn+ α′m
=
an+ bm

c
=
d

c′

for some d, c′ ∈ Z with (d, c′) = 1 and c′ | N . Since d/c′ is Γ0(N)-equivalent to some

element of M , so is n/m.

To prove statement (ii), we assume that p and q are two Γ0(N)-equivalent ele-

ments of M . We write them as reduced fractions p = d/c and q = d′/c′. Since they

are Γ0(N)-equivalent, there is a σ =
(

α β
γN δ

)
∈ Γ0(N) such that

αd+ βc

γNd+ δc
=
d′

c′

13



By Lemma 4.5 and after replacing σ with −σ if necessary, we get

αd+ βc = d′ (3)

γNd+ δc = c′ (4)

Since c | N , Equation (4) implies c | c′. By the same argument with p and q

exchanged, we also get c′ | c and thus c = c′. After dividing Equation (4) by

c, we get δ ≡ 1 (mod N/c). Because detσ = 1, we have αδ ≡ 1 (mod N) ≡ 1

(mod N/c) and hence α ≡ 1 (mod N/c). Now it follows from Equation (3) that

d ≡ d′ (mod (c,N/c)). By the definition of Rc,N , d and d′ must be equal. Hence,

p = d/c and q = d′/c′ are the same element of M .

Corollary 4.11. If p is prime, there are exactly two equivalence classes of cusps

under Γ0(p). They are represented by 1 and ∞.

4.3 Fundamental Region for Γ0(p)

Throughout this section, we assume p to be any prime.

Lemma 4.12. (Apostol; 1990) Let S(τ) = −1/τ and T (τ) = τ+1 be the generators

of the full modular group SL(2,Z). Then every V ∈ SL(2,Z)−Γ0(p) can be written

as

V = PST k

for some P ∈ Γ0(p) and some integer 0 ≤ k < p.

Proof. We have that V =
(
A B
C D

)
for C 6≡ 0 (mod p). We want to find P =

(
a b
c d

)
with c ≡ 0 (mod p) and an integer 0 ≤ k < p so that

(
A B

C D

)
=

(
a b

c d

)(
0 −1

1 0

)(
1 1

0 1

)k
=

(
a b

c d

)(
0 −1

1 k

)

Solving this for
(
a b
c d

)
we get(

a b

c d

)
=

(
A B

C D

)(
k 1

−1 0

)
=

(
kA−B A

kC −D C

)

Because C 6≡ 0 (mod p), there is a 0 ≤ k < p with kC ≡ D (mod p). Choose

c = kC −D, a = kA−B, b = A, d = C.

Then c ≡ 0 (mod N) and hence P ∈ Γ0(p).

Remark 4.13. The sets Γk := {PAk | P ∈ Γ0(p)} where Ak = ST k if 0 ≤ k < p

and Ap = I2 are pairwise disjoint.
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Proof. Suppose PST k = QST l for some P and Q in Γ0(p) and 0 ≤ k, l < p. Then

we have that P−1Q = ST k−lS−1 =
(

1 0
−k+l 1

)
. Since P−1Q ∈ Γ0(p) we get k− l ≡ 0

(mod p). Because of the bounds on l and k, the only solution is k = l. Thus, the

sets Γk are pairwise disjoint for 0 ≤ k < p.

Suppose P = QST l for some P and Q in Γ0(p) and 0 ≤ l < p. Then we get

S = Q−1PT−l ∈ Γ0(p), but since S 6∈ Γ0(p) this is a contradiction. Thus, Γp is

disjoint from any Γl with 0 ≤ l < p.

Let F be a fundamental region of SL(2,Z).

Theorem 4.14. (Apostol; 1990) A fundamental region of Γ0(p) is given by

Fp = F ∪
p−1⋃
k=0

ST k(F)

In Figure 1 the fundamental region F5 is shown for the choice of F as in

Lemma 2.3.

Proof. We have to prove that

(i) every τ ∈ H is Γ0(p)-equivalent to some point in the closure of Fp and,

(ii) no two distinct points in Fp are Γ0(p)-equivalent.

We begin by proving (i). Let τ ∈ H. Since F is a fundamental region for SL(2,Z),

we can find an A ∈ SL(2,Z) with A(τ) = τ1 ∈ F . By Lemma 4.12 there are

P ∈ Γ0(p), 0 ≤ k < p and W = I2 or W = ST k such that A−1 = PW . Let

V := P−1 = WA. We have that V ∈ Γ0(p) with V (τ) = WA(τ) = W (τ1) ∈ Fp.

This implies (i).

To prove (ii) suppose τ1 and τ2 are in Fp and there is a V ∈ Γ0(p) with V (τ1) =

τ2. We want to show that τ1 = τ2. We look at three cases:

(a) τ1, τ2 ∈ F . Since V ∈ SL(2,Z) and F is a fundamental domain we have

τ1 = τ2.

(b) τ1 ∈ F , τ2 ∈ ST k(F). Write τ2 = ST k(τ3) for some τ3 ∈ F . Then τ1 =

V −1(τ2) = V −1ST k(τ3). Since τ1 and τ3 both lie in F , they must be equal.

Let U :=
(
V −1ST k

)−1
(F). Because the map τ 7→ V −1ST k(τ) is continuous,

U is open. On the open and nonempty set U ∩F the map τ 7→ V −1ST k(τ) is

the identity and by the identity theorem, it is the identity on all of H. Thus

V −1ST k = ±I2. Hence, V = ±ST k = ±
(
0 −1
1 k

)
which contradicts V ∈ Γ0(p).

(c) τ1 ∈ ST k1(F), τ2 ∈ ST k2(F). There are τ ′1, τ
′
2 ∈ F with τ1 = ST k1(τ ′1) and

τ2 = ST k2(τ ′2). Because V (τ1) = τ2, we get V ST k1(τ ′1) = ST k2(τ ′2) and hence

as above V ST k1−k2S−1 = ±I2. Therefore, V = ±ST k2−k1S−1 = ±
(

1 0
k1−k2 1

)
.

Since V ∈ Γ0(p), we get k2 ≡ k1 (mod p). But k1 and k2 both lie between 0

and p − 1, thus they must be equal. We get that V = ±ST 0S−1 = ±I2 and

τ1 = τ2.
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Figure 1: Plot of a fundamental region for Γ0(5).

4.4 Automorphic Functions

Let N be a positive integer. Let p be any prime. First, we generalise the definition

of modular functions.

Definition 4.15. Let G be a subgroup of SL(2,Z) conjugate to Γ0(N). A function

f : H → C is automorphic under G or a modular function for G if it satisfies the

following three conditions:

(i) f is meromorphic on H

(ii) f is invariant under G, i.e. f(γ(τ)) = f(τ) for all γ ∈ G and τ ∈ H

(iii) f is meromorphic at the cusps, i.e. for very γ ∈ SL(2,Z) the Fourier expansion

of f(γ(τ)) is of the form

f(γ(τ)) =

∞∑
n=−m

ane
2πinτ/N

for some m ∈ Z.

If f 6≡ 0 we can choose m in condition (iii) such that a−m 6= 0. If m > 0 or m < 0,

we say that f has a pole or a zero of order m/N at the cusp γ(i∞), respectively.
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Remark 4.16. (Cox; 2013) For condition (iii) to make sense, we have to show that

f(γ(τ)) is invariant under τ 7→ τ + N , which corresponds to U :=
(
1 N
0 1

)
. Then

f(γ(τ)) is a meromorphic function of q1/N = e2πinτ/N .

Proof. We have G = σΓ0(N)σ−1 for some σ ∈ SL(2,Z). For any γ ∈ SL(2,Z)

we have that γUγ−1 =
(
a b
c d

) (
1 N
0 1

) (
d −b
−c a

)
=
( ∗ ∗
cd−c2N−cd ∗

)
lies in Γ0(N). Hence,

also (σ−1γ)U(σ−1γ)−1 lies in Γ0(N) and σ(σ−1γ)U(σ−1γ)−1σ−1 = γUγ−1 belongs

to G. Thus, for any γ ∈ SL(2,Z) we have f(γU(τ)) = f(γUγ−1γ(τ)) = f(γ(τ)).

Therefore, f(γ(τ)) is invariant under τ 7→ τ +N .

Theorem 4.17. (Apostol; 1990) Every function f which is automorphic under

Γ0(p) and bounded in H, is constant.

Proof. By Lemma 4.12 we can write

SL(2,Z) =

p⋃
k=0

{PAk | P ∈ Γ0(p)}

where Ak = ST k if k < p and Ap = I2. Let Vk ∈ Γk := {PAk | P ∈ Γ0(p)} and

define

fk(τ) = f(Vk(τ)).

These functions are well defined since

fk(τ) = f(Vk(τ)) = f(PAk(τ)) = f(Ak(τ))

which depends only on k and not on the choice of Vk. Note that fp(τ) = f(P (τ)) =

f(τ). Now let V ∈ SL(2,Z). Then fk(V (τ)) = f(AkV (τ)). Since AkV ∈ SL(2,Z),

AkV = QAm for some Q ∈ Γ0(p) and an integer 0 ≤ m ≤ p. Therefore,

fk(V (τ)) = f(QAm(τ)) = fm(τ).

If AkV = QAm and AlV = RAm for some Q and R ∈ Γ0(p), then Al = RQ−1Ak

and hence Γl = Γk. Since Γl and Γk are disjoint for k 6= l by Remark 4.13, we have

l = k. Thus, there is a permutation σ of {0, 1, ..., p} with fk(V τ) = fσ(k)(τ) for

0 ≤ k ≤ p. Now let w ∈ H be fixed and let

φ(τ) =

p∏
k=0

(fk(τ)− f(w)).

Because f and hence each fk is bounded, φ is bounded as well. Therefore, φ has no

poles in H ∪ {∞}. For V ∈ SL(2,Z)

φ(V τ) =

p∏
k=0

(fk(V (τ))− f(w)) =

p∏
k=0

(fσ(k)(τ)− f(w)) = φ(τ).
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So φ is a holomorphic modular function holomorphic at ∞. By Lemma 2.7, φ is

constant and since φ(w) = 0, we have φ ≡ 0. Thus for τ = i we have

0 =

p∏
k=0

(fk(i)− f(w))

hence one factor must be zero. Since w was arbitrary, f can only take values in

{fk(i)}pk=0. Because f is continuous, f must be constant.

4.5 Hauptmoduln for Γ0(N)

Definition 4.18. Let G be a subgroup of SL(2,Z) conjugate to Γ0(N) for some N .

A Hauptmodul for G is a function which generates the field of modular functions

for G. A Hauptmodul for Γ0(N) is also called Hauptmodul of level N .

Example 4.19. In Section 3 we proved that the j-function is a Hauptmodul of

level 1, i.e. it is a Hauptmodul for SL(2,Z).

Table 1: Hauptmoduln of level N (Beneish and Larson; 2014)
N 2 3 4 5 6 7 13

jN(τ) η(τ)24

η(2τ)24
η(τ)12

η(3τ)12
η(τ)8

η(4τ)8
η(τ)6

η(5τ)6
η(2τ)3η(3τ)9

η(τ)3η(6τ)9
η(τ)4

η(7τ)4
η(τ)2

η(13τ)2

The Dedekind eta function is defined as

η(τ) =

(
∆(τ)

(2π)12

)1/24

= q1/24
∞∏
n=1

(1− qn),

where q1/24 = e2πi/24. The Dedekind eta function is holomorphic and nonzero on

H (Apostol; 1990).

In Table 1 some Hauptmoduln jN of level N are listed. In this section, we

show that the given Hauptmoduln are invariant under Γ0(N) and we examine their

behaviour at the cusps. Since the Hauptmoduln are fractions of the Dedekind eta

function, we need to know how η transforms under SL(2,Z). Recall Corollary 3.6:

For all
(
a b
c d

)
∈ SL(2,Z)

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ).

Taking the 24th root we get that

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)(cτ + d)1/2η(τ),

for some ε with ε24 = 1 depending on our transformation. In Apostol (1990) a

formula is derived for this ε:
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Theorem 4.20. (Apostol; 1990) If
(
a b
c d

)
∈ SL(2,Z) with c > 0 and τ ∈ H,

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d) (−i(cτ + d))1/2 η(τ),

where

ε(a, b, c, d) = exp

(
πi

(
a+ d

12c
+ s(−d, c)

))
and

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
.

Remark 4.21. For a γ =
(
a b
c d

)
∈ SL(2,Z) with c 6= 0 we can fulfill the con-

dition c > 0 in Theorem 4.20 by replacing γ with −γ, which describes the same

transformation. If c = 0, γ is a power of τ 7→ τ + 1 and transforms according to

Lemma 4.24.

The function s(h, k) is called Dedekind sum. It has the following properties:

Theorem 4.22. (Apostol; 1990) Suppose (h,k)=1 and k is positive.

(i) If a ∈ Z with ha ≡ ±1 (mod k), then s(a, k) = ±s(h, k).

(ii) If h2 + 1 ≡ 0 (mod k), then s(h, k) = 0.

Theorem 4.23. (Apostol; 1990) Let N = 3, 5, 7 or 13 and r = 24/(N − 1). For

integers a, b, c, d with ab−Ncd = 1 and c > 0, let

δ =

(
s(a,Nc)− a+ d

12Nc

)
−
(
s(a, c)− a+ d

12c

)
.

The product rδ then is an even integer.

Lemma 4.24. (Apostol; 1990) For the generators T : τ 7→ τ + 1 and S : τ 7→ −1/τ

of SL(2,Z) we have

η(τ + 1) = eπi/12η(τ)

η

(
−1

τ

)
= (−iτ)1/2η(τ)

Proof. By definition of η(τ) and with q = e2πiτ , we have

η(τ+1) = e2πi(τ+1)/24
∞∏
n=1

(1− e2πin(τ+1)) = eπi/12q1/24
∞∏
n=1

(1− qne2πin) = eπi/12η(τ).

To obtain the second equation, we apply Theorem 4.20 for
(
0 −1
1 0

)
. We have

η

(
−1

τ

)
= ε(0,−1, 1, 0)(−iτ)1/2η(τ),

with ε(0,−1, 1, 0) = exp(πi s(0, 1)) and s(0, 1) = 0.
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Lemma 4.25. If k | N and γ =
(
a b
Nc d

)
∈ Γ0(N) with c > 0, then

η(kγ(τ)) = ε(a, kb, cN/k, d)(−i(Ncτ + d))1/2η(kτ).

Proof. Using Theorem 4.20, we get

η(kγ(τ)) = η

(
kaτ + kb

Ncτ + d

)
= η

((
a kb

Nc/k d

)
(kτ)

)
= ε(a, kb, cN/k, d)(−i(Ncτ + d))1/2η(kτ).

Lemma 4.26. For N = 2, 3, 4, 5, 7 or 13, jN (τ) is invariant under T = ( 1 1
0 1 ).

Proof. By Lemma 4.24, we have

η (( 1 1
0 1 ) (τ)) = eπi/12η(τ)

and

η (N ( 1 1
0 1 ) (τ)) = η

((
1 N
0 1

)
(Nτ)

)
= eNπi/12η(Nτ).

Hence,

jN (( 1 1
0 1 ) (τ)) =

(
e−(N−1)πi/12

η(τ)

η(Nτ)

)24/(N−1)
= e−2πijN (τ) = jN (τ).

Theorem 4.27. For N = 2, 3, 5, 7 or 13, jN (τ) is invariant under Γ0(N).

Proof. If γ =
(
a b
0 d

)
∈ Γ0(N), then det(γ) = 1 implies a = d = ±1. Hence, the

transformation induced by γ is the same as the transformation induced by some

power of T . From Lemma 4.26 it follows that jN is invariant under γ.

If γ is not a power of T , we distinguish two cases.

N = 2: Let γ =
(
a b
2c d

)
∈ Γ0(2) with c 6= 0. If c < 0 we replace γ by −γ which

induces the same transformation. By Lemma 4.25 and using ε24 = 1 we have

j2(γ(τ)) =
η(γ(τ))24

η(2γ(τ))24
=

(2cτ + d)12η(τ)24

(2cτ + d)12η(2τ)24
= j2(τ).

N ∈ {3, 5, 7, 13}: Let γ =
(
a b
Nc d

)
∈ Γ0(N) with c 6= 0 and r = 24/(N − 1). If

c < 0 we replace γ by −γ which induces the same transformation. With Lemma 4.25

we get

jN (γ(τ)) =

(
η(γ(τ))

η(Nγ(τ))

)r
=

(
ε(a, b, cN, d)(−i(Ncτ + d))1/2η(τ)

ε(a,Nb, c, d)(−i(Ncτ + d))1/2η(Nτ)

)r
=

(
ε(a, b, cN, d)

ε(a,Nb, c, d)

)r
jN (τ).
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Now,(
ε(a, b, cN, d)

ε(a,Nb, c, d)

)r
= exp

(
rπi

(
a+ d

12Nc
+ s(−d,Nc)− a+ d

12c
− s(−d, c)

))
.

Since ad − Ncb = 1, we have ad ≡ 1 (mod Nc) and ad ≡ 1 (mod c). By

Theorem 4.22, we get s(−d,Nc) = −s(a,Nc) and s(−d, c) = −s(a, c). Hence,

together with Theorem 4.23, we have(
ε(a, b, cN, d)

ε(a,Nb, c, d)

)r
= exp

(
rπi

(
a+ d

12Nc
− s(a,Nc)

)
−
(
a+ d

12c
− s(a, c)

))
= 1.

Lemma 4.28. (Bruinier et al.; 2008) The group Γ0(4) is generated by T = ( 1 1
0 1 )

and R = ( 1 0
4 1 ) and −I2 .

Proof. Let γ =
(
a b
4c d

)
∈ Γ0(4). Let T± =

(
1 ±1
0 1

)
and R± =

(
1 0
±4 1

)
. Then T± and

R± lie in Γ0(4). The coefficients a and d are odd, since 2 - det(γ) = 1. Hence,

|a| 6= 2|b|. If |a| < 2|b|, either |b+ a| or |b− a| is smaller than |b|. Multiplying from

right with T+ or T−, respectively, we get γ′ = γT± =
(
a b±a
4c d±4c

)
with |b ± a| < |b|.

Hence, a2 + (b ± a)2 < a2 + b2. If |a| > 2|b| 6= 0, either |a + 4b| or |a − 4b| < |a|.
Multiplying from right withR+ orR−, respectively, we obtain γ′ = γR± =

(
a±4b b
4c±4d d

)
with |a ± 4b| < |a| and hence (a ± 4b)2 + b2 < a2 + b2. Thus, multiplying γ from

right with R± or T± reduces a2 + b2 ∈ Z≥0 if b 6= 0. Hence, we can do this until

b = 0. Then we are left with γ′ =
(
a 0
4c d

)
. Since det γ′ = 1, we have a = d = ±1.

Therefore, ±γ′ is a power of R±. Note that R− = R−1 and T− = T−1. Hence,

Γ0(4) is generated by R, T and −I2.

Theorem 4.29. The function j4(τ) is invariant under Γ0(4).

Proof. By Lemma 4.28 and since I2 and −I2 represent the same transformation, we

only need to verify that j4(τ) is invariant under T and R. We have already proven

the invariance under T in Lemma 4.26. With Theorem 4.20 we find

η (( 1 0
4 1 ) (τ)) = η

(
τ

4τ + 1

)
= ε(1, 0, 4, 1) (−i(4τ + 1))1/2 η(τ)

η (4 ( 1 0
4 1 ) (τ)) = η

(
4τ

4τ + 1

)
= ε(1, 0, 1, 1) (−i(4τ + 1))1/2 η(4τ)

with

ε(1, 0, 4, 1) = exp

(
πi

(
2

48
+ s(−1, 4)

))
ε(1, 0, 1, 1) = exp

(
πi

(
2

12
+ s(−1, 1)

))
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and

s(−1, 4) =
1

4

(
−1

4
−
⌊
−1

4

⌋
− 1

2

)
+

2

4

(
−2

4
−
⌊
−2

4

⌋
− 1

2

)
+

3

4

(
−3

4
−
⌊
−3

4

⌋
− 1

2

)
= −1

8
= − 6

48

s(−1, 1) = 0 by Theorem 4.22.

Thus, we get

j4 (( 1 0
4 1 ) (τ)) =

(
exp(−πi/12)

exp(2πi/12)

)8

j4(τ) = j4(τ).

Theorem 4.30. The function j6(τ) is invariant under Γ0(6).

Proof. Using the mathematical software SageMath (The Sage Developers; 2017)

one finds that Γ0(6) is generated by the set
{

( 1 1
0 1 ) ,

(
5 −1
6 −1

)
,
(

7 −3
12 −5

)
,
(−1 0

0 −1
)}
. We

have to verify that j6(τ) is invariant under these generators. For
(−1 0

0 −1
)

this is

clear, because the transformation induced is the identity. For the other generators

we proceed as in the proof of Theorem 4.29. The calculations can be found in the

Appendix.

Now we want to examine the behaviour of jN (τ) at the cusps. We begin with the

cusp at ∞. For our purpose we use the following result proven in Apostol (1990):

Theorem 4.31. (Apostol; 1990) The Fourier expansion of ∆(τ) is of the form

∆(τ) = (2π)12
∞∑
n=1

anq
n

with a1 = 1 and a2 = −24.

Theorem 4.32. (Apostol; 1990) For N = 2, 3, 4, 5, 7 and 13 the Hauptmodul jN (τ)

has a pole of order 1 at infinity.

Proof. For these N , we have

jN (τ) =

(
η(τ)

η(Nτ)

)24/(N−1)
.

Moreover, by Theorem 4.31 we have η(τ)24 = q(1 + I(q)), where I(q) denotes some

power series in q. Hence,

jN (τ)N−1 =
η(τ)24

η(Nτ)24
=

q(1 + I(q))

qN (1 + I(qN ))

has a pole of order N − 1 at q = 0. Since jN (τ) is meromorphic, it has a pole of

order 1 at q = 0.
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Theorem 4.33. For N = 2, 3, 4, 5, 7 and 13 the Hauptmodul jN (τ) has a zero of

order 1/N at τ = 0.

Proof. For S =
(
0 −1
1 0

)
∈ SL(2,Z) we have S(i∞) = 0. As described in Defini-

tion 4.15 we look at the q-expansion of

jN (Sτ) =

(
η(S(τ))

η(NS(τ))

)24/(N−1)

where η(S(τ)) = (−iτ)1/2η(τ) and η(NS(τ)) = (−iτ/N)1/2η(τ/N). Therefore,

jN (Sτ) = N12/(N−1)
(

η(τ)

η(τ/N)

)24/(N−1)
= N12/(N−1) 1

q−1/N +
∑∞

n=0 anq
n/N

= N12/(N−1) q1/N

1 +
∑∞

n=0 anq
(n+1)/N

,

where we used that by Theorem 4.32 we can write jN (τ) = q−1 +
∑∞

n=0 anq
n.

Therefore, jN has a zero of order 1/N at zero.

Recall that the equivalence classes of cusps for Γ0(N) are described in The-

orem 4.10. For prime numbers, there are only two equivalence classes of cusps.

Thus, apart from N = 4 and 6, we have already described the behaviour of the

Hauptmoduln at all cusps. For N = 4 we still need to study the pole at 1/2.

Theorem 4.34. For the Hauptmodul j4(τ) we have

lim
τ→1/2

j4(τ) = −16.

Proof. For γ = ( 1 0
2 1 ) ∈ SL(2,Z) we have γ(i∞) = 1/2. By Theorem 4.20 we have

η(γ(z)) = ε(1, 0, 2, 1)(−i(2z + 1))1/2η(z),

with ε(1, 0, 2, 1) = exp(πi(2/24 + s(−1, 2))) and s(−1, 2) = 0 by Theorem 4.22.

Moreover, we have η(4γ(z)) = η (( 4 0
2 1 ) (z)) . Now with α =

(
0 1
−1 2

)
we get

η
(
α−1α ( 4 0

2 1 ) (z)
)

= η

(
α−1

(
2z + 1

2

))
= ε(2,−1, 1, 0)

(
−i2z + 1

2

)1/2

η

(
z +

1

2

)
,

with ε(2,−1, 1, 0) = exp(πi(2/12 + s(0, 1))) and s(0, 1) = 0. Thus we have

η(γ(z))

η(4γ(z))
=

eπi/12(−i(2z + 1))1/2η(z)

e2πi/12
(
−1

2 i(2z + 1)
)1/2

η
(
z + 1

2

) . (5)

Now, η(z) = q1/24I(q) and η(z + 1/2) = eπi/24q1/24I(−q) for q = e2πiz and some

I(q) with limq→0 I(q) = 1. Together with Equation (5) we have

lim
τ→1/2

j4(τ) = lim
z→i∞

η(γ(z))8

η(4γ(z))8
= lim

q→0
e−8πi/12 · 24 · e−8πi/24 q1/24I(q)

q1/24I(−q)
= −24.
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Table 2: The values of j6(τ) at the cusps.
Cusp 0 1/6 1/3 1/2

Value 8 ∞ 0 e3πi/4

Theorem 4.35. The values of j6(τ) at the cusps are those listed in Table 2. At

infinity, j6(τ) has a pole of order one and the zero at 1/3 is of order 1/2.

The proof of Theorem 4.35 can be found in the Appendix.

5 Modular Functions for Γ(1,1)

Let i, j ∈ Z/nZ =: Zn. We define

Γ(i,j) := {γ ∈ SL(2,Z)|(i, j)γ = (i, j)} .

For every positive integer n, the sets Γ(i,j) are subgroups of SL(2,Z) containing

Γ(n).

Theorem 5.1. Let n be a positive integer and i, j ∈ Zn. Then

Γ(i,j)
∼= Γ1

(
n

gcd(n, i, j)

)
.

Proof. For i = j = 0 the statement is clear since Γ(0,0) = SL(2,Z) = Γ1(1). Now

let j 6= 0. Let γ =
(
a b
c d

)
∈ Γ(0,j). The definition of Γ(0,j) implies that cj ≡ 0

(mod n) and dj ≡ j (mod n). Hence, n | cj and n | (d− 1)j. For r := n/ gcd(n, j)

we thus have c ≡ 0 (mod r) and d ≡ 1 (mod r). Therefore, γ ≡
(
a b
0 1

)
(mod r).

Since det(γ) = 1, we get a ≡ 1 (mod r) and thus γ lies in Γ1(r). Conversely, for

any γ =
(
ra+1 b
rc rd+1

)
∈ Γ1(r) we have

(0, j)
(
ra+1 b
rc rd+1

)
= (jrc, jrd+ j) ≡ (0, j) (mod n),

because n = gcd(j, n) · r divides j · r. Therefore,

Γ(0,j) = Γ1(r) = Γ1

(
n

gcd(n, j)

)
. (6)

Now for (i, j) with gcd(i, j) = k we can find integers b and d such that dj+bi = k.

Define A(i,j) :=
(

j/k b
−i/k d

)
. Note that A(i,j) ∈ SL(2,Z) and

(i, j)A(i,j) = (0, bi+ dj) = (0, k).

Hence, a matrix γ belongs to Γ(i,j) if and only if A−1(i,j)γA(i,j) lies in Γ(0,k). Thus,

Γ(i,j) = A(i,j)Γ(0,k)A
−1
(i,j)
∼= Γ(0,k) = Γ1

(
n

gcd(n, i, j)

)
,
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by Equation (6) using gcd(n, gcd(i, j)) = gcd(n, i, j).

Lemma 5.2. Let N be a positive integer and let H be conjugate to G := Γ0(N),

i.e. G = σHσ−1 for some σ ∈ SL(2,Z). Then f(τ) is a modular function for G if

and only if f(στ) is a modular function for H.

Proof. (⇒) Let γ ∈ H. Then σγσ−1 ∈ G and

f(σγτ) = f(σγσ−1στ) = f(στ),

because f is invariant under G. Hence, f(στ) is invariant under H. Furthermore,

f(στ) is meromorphic on H since f(τ) is a meromorphic and σ(τ) is holomorphic

on H. Moreover, f(στ) is meromorphic at the cusps, because at the cusp γ(i∞) it

has the same q-expansion as f(τ) at the cusp σγ(i∞). Thus, f(στ) is a modular

function for H.

(⇐) If f(στ) is a modular function for H, we can apply the above argument for

σ−1 instead of σ and with G and H interchanged and get that f(τ) is a modular

function for G.

We write [τ ]G for the G-equivalence class of a cusp τ .

Remark 5.3. Let G and H be conjugate subgroups of SL(2,Z), i.e. G = σHσ−1

for some σ ∈ SL(2,Z). Then, [τ ]H = σ−1[στ ]G. In particular, G and H have the

same number of equivalence classes of cusps.

Proof. We have that z ∈ [τ ]H ⇔ z = ατ for some α ∈ H ⇔ σz = (σασ−1)στ for

some α ∈ H ⇔ σz ∈ [στ ]G, where we used that σHσ−1 = G. Hence, z ∈ [τ ]H ⇔
z ∈ σ−1[στ ]G.

We will now focus on the case n = 2. We consider the groups Γ(0,1), Γ(1,0) and

Γ(1,1) and want to find corresponding Hauptmoduln. Let S =
(
0 −1
1 0

)
, T = ( 1 1

0 1 )

and let Γθ be the group generated by S and T 2.

Lemma 5.4. We have Γ1(2) = Γ0(2) and Γ1(2) = (ST )Γθ(ST )−1.

Proof. Since ad ≡ 1 (mod 2) implies a ≡ d ≡ 1 (mod 2), we have

Γ0(2) =
{(

a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod 2)

}
=
{(

a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod 2), a ≡ d ≡ 1 (mod 2)

}
= Γ1(2).

For the second statement, we calculate

A := (ST )S(ST )−1 =
(−1 −1

2 1

)
∈ Γ1(2)

and

B := (ST )T 2(ST )−1 =
(

1 0
−2 1

)
∈ Γ1(2).
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Therefore, (ST )Γθ(ST )−1 < Γ1(2). We have B−1 = ( 1 0
2 1 ) and (AB)−1 = T , which

generate Γ1(2). (This can be proved analogously to Lemma 4.28 using (TB)−2 =

−I.) Thus we get (ST )Γθ(ST )−1 = Γ1(2).

Kim and Koo (2004) give a list of Hauptmoduln j1,N for some Γ1(N) in the

Appendix of their paper. For N = 2 they have

j1,2(τ) =
θ2(τ)8

θ4(2τ)8
,

where θ2(τ) =
∑

n∈Z q
(n+1/2)2/2 and θ4(τ) =

∑
n∈Z (−1)nqn

2/2 for τ ∈ H. Since

Γ0(2) = Γ1(2), we expect the Hauptmodul j2(τ) = (η(τ)/η(2τ))24 for Γ0(2) given

in Beneish and Larson (2014) to be compatible with j1,2(τ), meaning that we can

express j1,2 as a rational function of j2 and vice versa. To check this, we use the

Jacobi triple product which is proven in the book by Apostol (1976).

Theorem 5.5 (Jacobi triple product). (Apostol; 1976) For x, z ∈ C with |x| < 1

and z 6= 0 we have the following identity:

∞∏
n=1

(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) =
∞∑

m=−∞
xm

2
z2m.

Corollary 5.6. (Conway and Sloane; 1999) We can express θ2 and θ4 as the

following η-quotients

θ2(τ) =
2η(2τ)2

η(τ)

θ4(τ) =
η(τ/2)2

η(τ)

Proof. Applying the Jacobi triple product with x = q1/2 and z = q1/4 we have

θ2(τ) =
∑
m∈Z

q(m
2+m+1/4)/2 = q1/8

∞∏
n=1

(1− qn)(1 + qn)(1 + qn−1)

= q1/8(1 + q0)
∞∏
n=1

(1− qn)(1 + qn)(1 + qn) = 2q1/8
∞∏
n=1

(1− q2n)(1 + qn)

=
2q1/6

∏∞
n=1(1− q2n)2

q1/24
∏∞
m=1(1− qm)

=
2η(2τ)2

η(τ)
.

Applying the Jacobi triple product with x = q1/2 and z = i leads to

θ4(τ) =
∑
m∈Z

(−1)mqm
2/2 =

∞∏
n=1

(1− qn)(1− q−1/2+n)2

=

∞∏
n=1

(1− qn)2(1− q−1/2+n)2

(1− qn)
=
q1/24

∏∞
l=1(1− ql/2)2

q1/24
∏∞
n=1(1− qn)

=
η(τ/2)2

η(τ)
.
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With Corollary 5.6 it is now easy to see that the two Hauptmoduln j1,2 and j2

are compatible, since

j1,2(τ) =
θ2(τ)8

θ4(2τ)8
=

28η(2τ)16η(2τ)8

η(τ)8η(τ)16
=

28η(2τ)24

η(τ)24
=

28

j2(τ)
.

By Theorem 5.1 and Lemma 5.4 we have

Γ(0,1) = Γ1(2) = Γ0(2)

Γ(1,0) = S−1Γ1(2)S

Γ(1,1) = (ST )−1Γ(0,1)ST = T−1Γ(1,0)T = Γθ.

Theorem 5.7. The following functions j(0,1), j(1,0) and j(1,1) are Hauptmoduln for

Γ(0,1), Γ(1,0) and Γ(1,1), respectively.

j(0,1)(τ) = j2(τ) = q−1 +

∞∑
n=0

anq
n

j(1,0)(τ) =
212

j2(Sτ)
= q−1/2 +

∞∑
n=0
n∈ 1

2
Z

bnq
n

j(1,1)(τ) = − 212

j2(STτ)
= q−1/2 +

∞∑
n=0
n∈ 1

2
Z

cnq
n,

where j2 is the Hauptmodul for Γ0(2) defined in Section 4.5, q = e2πiτ and an, bn ∈ Z
and cn ∈ Z≥0. There are two equivalence classes of cusps for Γ(0,1),Γ(1,0) and Γ(1,1).

The Hauptmoduln j(1,0) and j(1,1) have zeros of order 1 at the cusps inequivalent to

∞, whereas j(0,1) has zeros of order 1/2.

Proof. For j(0,1) we have proven most of the properties in Section 4.5 and we only

need to show that the q-expansion has integer coefficients. We have

j(0,1)(τ) =
∆(τ)

∆(2τ)
=

q
∏∞
m=1(1− qm)24

q2
∏∞
n=1(1− q2n)24

=
1

q

∞∏
k=1

(1− q2k−1)24.

Hence, j(0,1) has a pole of order one at infinity and comparing coefficients, we see

that its q-expansion has integer coefficients.

Let f(τ) be a modular function for Γ(1,0). By Lemma 5.2 then f(S−1τ) is a

modular function for Γ0(2). Since j2 is a Hauptmodul for Γ0(2), we can write

f(S−1τ) = r(j2(τ)) for some rational function r. Substituting S−1τ with τ , we

get f(τ) = r(j2(Sτ)). Hence, j2(Sτ) is a Hauptmodul for Γ(1,0). Therefore,

also j(1,0)(τ) = 212/j2(Sτ) is a Hauptmodul for Γ(1,0). Analogously, j(1,1)(τ) =

−212/j2(STτ) is a Hauptmodul for Γ(1,1).
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Now we look at the q-expansions. We have

j(1,0)(τ) = 212
∆(2S(τ))

∆(S(τ))
= 212

∆(S(τ/2))

∆(S(τ))
= 212

(τ/2)12∆(τ/2)

τ12∆(τ)
=

∆(τ/2)

∆(τ)

=
q1/2

∏∞
m=1(1− qm/2)24

q
∏∞
n=1(1− qn)24

=
1

q1/2

∞∏
l=1

(1− q−1/2+l)24.

Comparing coefficients, we see that the q-expansion starts with q−1/2− 24 + ... and

that it has integer coefficients. For Γ(1,1) we have

j(1,1)(τ) = −212
∆(2ST (τ))

∆(ST (τ))
.

Since ST =
(
0 −1
1 1

)
, we have ∆(ST (τ)) = (τ + 1)12∆(τ). Moreover,

∆(2ST (τ)) = ∆

(
− 2

τ + 1

)
= ∆

((
0 −1
1 0

)(τ + 1

2

))
=

(
τ + 1

2

)12

∆

(
τ + 1

2

)
.

Therefore,

j(1,1)(τ) = −
∆
(
τ+1
2

)
∆(τ)

= −
−q1/2

∏∞
m=1(1− (−1)mqm/2)24

q
∏∞
n=1(1− qn)24

=
1

q1/2

∞∏
l=1

(1+q−1/2+l)24.

Comparing coefficients, we have j(1,1)(τ) = q−1/2 +
∑∞

n=0
n∈ 1

2
Z
cnq

n for positive integers

cn.

By Remark 5.3, Γ(1,0) and Γ(1,1) have the same number of equivalence classes of

cusps as Γ(0,1) which is two by Corollary 4.11. Representatives are given by {0,∞}
and {0,−1} for Γ(1,0) and Γ(1,1), respectively. For the latter, 0 is equivalent to ∞
because S ∈ Γ(1,1) and S(∞) = 0. Now we calculate the q-expansions at 0 and −1

as described in Definition 4.15, respectively.

j(1,0)(S
−1τ) =

212

j2(SS−1τ)
=

212

q−1 +
∑∞

n=0 anq
n

= q
212

1 +
∑∞

n=0 anq
n+1

,

j(1,1)((ST )−1τ) = − 212

j2(ST (ST )−1τ)
= −q 212

1 +
∑∞

n=0 anq
n+1

,

where we used the q-expansion of j2(τ). Thus j(1,0) and j(1,1) have a zero of order

one at 0 and −1, respectively.

Remark 5.8. Let Z(1,1) be a holomorphic modular function for Γ(1,1) with a pole

of order n ∈ 1
2Z≥0 at τ = ∞ and a pole of order m ≤ k at τ = 1, where m

and k are nonnegative integers. Then since j(1,1)(τ) has a simple zero at τ = 1,

Z(1,1)(τ)(j(1,1)(τ))k is finite at τ = 1 and has a pole of order n+k/2 at infinity. Using

the same construction as in Lemma 3.11, we can find a polynomial p of degree 2n+k

such that f(τ) := Z(1,1)(τ)(j(1,1)(τ))k − p(j(1,1)(τ)) is holomorphic and bounded on

H and has a zero at infinity. For this we need the first 2n + k + 1 coefficients al
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of the q-expansion of Z(1,1) at infinity. Since f(τ) is a bounded modular function

for Γ(1,1), by Lemma 5.2 we have that f((ST )−1(τ)) is a bounded modular function

for Γ0(2). But then f((ST )−1(τ)) is constant by Theorem 4.17. Hence, also f(τ) is

constant and since it has a zero at infinity, we have f ≡ 0 and

Z(1,1)(τ) =
p(j(1,1)(τ))

(j(1,1)(τ))k
.

Hence, in order to write Z(1,1) as a rational function of j(1,1)(τ) we need to know

the first 2n+ k + 1 coefficients of the q-expansion of Z(1,1) at infinity. Note that if

m is smaller than k, the coefficients pl of the polynomial p are zero for l < k −m.

Theorem 5.9. Let Z(1,1)(τ) be a modular function for Γ(1,1) with only nonnegative

real coefficients in the q-expansion at infinity, i.e.

Z(1,1)(τ) =
∞∑

k=−n
k∈ 1

2
Z

akq
k,

for some n ∈ 1
2Z and ak ∈ R≥0. At the cusp τ = −1 the q-expansion then starts

with b−mq
−m + ... for some b−m ∈ C and m ∈ Z with m ≤ n. In particular, if

Z(1,1) has a pole of order n at infinity, then it has at most a pole of order n at the

inequivalent cusps.

Proof. Let Z(1,1)((ST )−1τ) =
∑∞

l=−m blq
l be the q-expansion at −1. Then we have

for all y ∈ R>0 that

Z(1,1)((ST )−1(iy)) =
∞∑

l=−m
ble
−2πly.

Since (ST )−1(iy) = i
y − 1, we have that

Z(1,1)((ST )−1(iy)) = Z(1,1)

(
i

y
− 1

)
=

∞∑
k=−n
k∈ 1

2
Z

ak(−1)ke−2πk/y.

Because the ak are positive, we have∣∣∣∣∣∣∣∣∣
∞∑

k=−n
k∈ 1

2
Z

ak(−1)ke−2πk/y

∣∣∣∣∣∣∣∣∣ ≤
∞∑

k=−n
k∈ 1

2
Z

ake
−2πk/y = Z(1,1)

(
i

y

)
= Z(1,1)(iy) =

∞∑
k=−n
k∈ 1

2
Z

ake
−2πky,

where we used that Z(1,1) is invariant under τ 7→ −1/τ . Combining the above

equations we get ∣∣∣∣∣
∞∑

l=−m
ble
−2πly

∣∣∣∣∣ ≤
∞∑

k=−n
k∈ 1

2
Z

ake
−2πky
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for all y ∈ R>0. If we divide this by e2πny and take the limit for y → ∞, the right

hand side converges to a−n < ∞, whereas the left hand side is finite if and only if

m ≤ n.

Remark 5.10. Let Z(1,1)(τ) be a modular function for Γ(1,1) holomorphic on H with

only nonnegative real coefficients in the q-expansion at infinity. Then Theorem 5.9

and Remark 5.8 give us the following results. If Z(1,1) is holomorphic at infinity,

Z(1,1) must be constant. If Z(1,1) has a pole of order n ∈ 1
2Z≥0 at infinity, we need

to know the first 2n + bnc + 1 coefficients to write Z(1,1) as a rational function of

j(1,1).

6 Appendix

Proof of Theorem 4.30. We begin with the invariance under ( 1 1
0 1 ). With Lemma 4.24

we have

η (2 ( 1 1
0 1 ) (τ)) = η (( 1 2

0 1 ) (2τ)) = e2πi/12η(2τ)

η (3 ( 1 1
0 1 ) (τ)) = η (( 1 3

0 1 ) (3τ)) = e3πi/12η(3τ)

η (( 1 1
0 1 ) (τ)) = eπi/12η(τ)

η (6 ( 1 1
0 1 ) (τ)) = η (( 1 6

0 1 ) (6τ)) = e6πi/12η(6τ)

Thus since j6(τ) = η(2τ)3η(3τ)9

η(τ)3η(6τ)9
we have

j6 (( 1 1
0 1 ) (τ)) =

e6πi/12e27πi/12

e3πi/12e54πi/12
j6(τ) = j6(τ).

Now we continue with the invariance under
(
5 −1
6 −1

)
. With Theorem 4.20 we get

η
(
2
(
5 −1
6 −1

)
(τ)
)

= η
((

5 −2
3 −1

)
(2τ)

)
= ε(5,−2, 3,−1)(−i(6z − 1))1/2η(2τ)

η
(
3
(
5 −1
6 −1

)
(τ)
)

= η
((

5 −3
2 −1

)
(3τ)

)
= ε(5,−3, 2,−1)(−i(6z − 1))1/2η(3τ)

η
((

5 −1
6 −1

)
(τ)
)

= ε(5,−1, 6,−1)(−i(6z − 1))1/2η(τ)

η
(
6
(
5 −1
6 −1

)
(τ)
)

= η
((

5 −6
1 −1

)
(6τ)

)
= ε(5,−6, 1,−1)(−i(6z − 1))1/2η(6τ)

with

ε(5,−2, 3,−1) = exp(πi(4/36 + s(1, 3))) = exp(πi(2/18 + 1/18)) = exp(πi/6)

ε(5,−3, 2,−1) = exp(πi(4/24 + s(1, 2))) = exp(πi/6)

ε(5,−1, 6,−1) = exp(πi(4/72 + s(1, 6))) = exp(πi(1/18 + 5/18)) = exp(πi/3)

ε(5,−6, 1,−1) = exp(πi(4/12 + s(1, 1))) = exp(πi/3)
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Combining everything we get

j6
((

5 −1
6 −1

)
(τ)
)

=
e3πi/6e9πi/6

e3πi/3e9πi/3
j6(τ) = j6(τ).

Now we are only left with the invariance under
(

7 −3
12 −5

)
. By Theorem 4.20 we

have

η
(
2
(

7 −3
12 −5

)
(τ)
)

= η
((

7 −6
6 −5

)
(2τ)

)
= ε(7,−6, 6,−5)(−i(12z − 5))1/2η(2τ)

η
(
3
(

7 −3
12 −5

)
(τ)
)

= η
((

7 −9
4 −5

)
(3τ)

)
= ε(7,−9, 4,−5)(−i(12z − 5))1/2η(3τ)

η
((

7 −3
12 −5

)
(τ)
)

= ε(7,−3, 12,−5)(−i(12z − 5))1/2η(τ)

η
(
6
(

7 −3
12 −5

)
(τ)
)

= η
((

7 −18
2 −5

)
(6τ)

)
= ε(7,−18, 2,−5)(−i(12z − 5))1/2η(6τ)

with

ε(7,−6, 6,−5) = exp(πi(2/72 + s(5, 6))) = exp(πi(1/36− 10/36)) = exp(−πi/4)

ε(7,−9, 4,−5) = exp(πi(2/48 + s(5, 4))) = exp(πi(1/24 + 3/24)) = exp(πi/6)

ε(7,−3, 12,−5) = exp(πi(2/144 + s(5, 12))) = exp(πi(1/72− 1/72)) = 1

ε(7,−18, 2,−5) = exp(πi(2/24 + s(5, 2))) = exp(πi/12)

Thus, we get

j6
((

7 −3
12 −5

)
(τ)
)

=
e−3πi/4e9πi/6

e9πi/12
j6(τ) = j6(τ).

Hence, j6(τ) is invariant under Γ0(6).

Proof of Theorem 4.35. By Theorem 4.10 the set {1, 1/2, 1/3, 1/6} is a set of repre-

sentatives of the equivalence classes of cusps under Γ0(6). Because ( 1 1
0 1 ) and ( 1 0

6 1 )

lie in Γ0(6), the cusp at zero is equivalent to the cusp at one and the cusp at infinity

is equivalent to the cusp at 1/6.

Let us first consider the cusp at infinity. We have

j6(τ)8 =
η(2τ)24η(3τ)3·24

η(τ)24η(6τ)3·24
.

From Theorem 4.32 we know that η(τ)24/η(2τ)24 has a pole of order one at infinity.

Therefore, η(2τ)24/η(τ)24 has a zero of order one and η(3τ)3·24/η(6τ)3·24 has a pole

of order nine at infinity. In total, we get that j6(τ)8 has a pole of order eight and

hence j6(τ) has a pole of order one at infinity.

For the cusp at zero, we have that limz→0 j6(z) = limτ→∞ j6(S(τ)), with S =(
0 −1
1 0

)
. For an integer k we calculate

η(kS(τ)) = η(−k/τ) = (−iτ/k)1/2η(τ/k),
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where we used Lemma 4.24. Thus, we get

j6(S(τ)) =
(−iτ/2)3/2η(τ/2)3(−iτ/3)9/2η(τ/3)9

(−iτ)3/2η(τ)3(−iτ/6)9/2η(τ/6)9
= 23

η(τ/2)3η(τ/3)9

η(τ)3η(τ/6)9
.

Since we can write η(τ) = q1/24I(q) with limq→0 I(q) = 1, we get

lim
τ→∞

j6(S(τ)) = 23 lim
q→0

q3/48q3/24

q3/24q3/48
= 23.

For the cusp at 1/3, we use that limz→1/3 j6(z) = limτ→∞ j6
((

1 −1
3 −2

)
(τ)
)
. With

α2 =
(
2 −1
3 −1

)−1
=
(−1 1
−3 2

)
and α6 =

(
2 −3
1 −1

)−1
=
(−1 3
−1 2

)
we get by Theorem 4.20

η
(
2
(
1 −1
3 −2

)
(τ)
)

= η
((

2 −2
3 −2

)
(τ)
)

= η
(
α−12 α2

(
2 −2
3 −2

)
(τ)
)

= η
(
α−12 ( 1 0

0 2 ) (τ)
)

= ε2(−i(3τ/2− 1))1/2η(τ/2)

η
(
3
(
1 −1
3 −2

)
(τ)
)

= η
((

1 −3
1 −2

)
(3τ)

)
= ε3(−i(3τ − 2))1/2η(3τ)

η
((

1 −1
3 −2

)
(τ)
)

= ε1(−i(3τ − 2))1/2η(τ)

η
(
6
(
1 −1
3 −2

)
(τ)
)

= η
((

2 −6
1 −2

)
(3τ)

)
= η

(
α−16 α6

(
2 −6
1 −2

)
(3τ)

)
= η

(
α−16 ( 1 0

0 2 ) (3τ)
)

= ε6(−i(3τ/2− 1))1/2η(3τ/2)

for some constants ε1, ε2, ε3 and ε6. Therefore, for some constant c we get

j6
((

1 −1
3 −2

)
(τ)
)

= c
(−i(3τ/2− 1))3/2η(τ/2)3(−i(3τ − 2))9/2η(3τ)9

(−i(3τ − 2))3/2η(τ)3(−i(3τ/2− 1))9/2η(3τ/2)9

= 23c
η(τ/2)3η(3τ)9

η(τ)3η(3τ/2)9
=

23c

j6(τ/2)
.

Now since j6(τ) has a simple pole at infinity, 1/j6(τ/2) has a zero of order 1/2 at

infinity. Hence, j6 has a zero of order 1/2 at the cusp 1/3.

To calculate the value of j6(τ) at the cusp 1/2, we use that limz→1/2 j6(z) =

limτ→∞ j6 (( 1 0
2 1 ) (τ)). With α3 =

(
1 −1
−2 3

)
= ( 3 1

2 1 )
−1

and α6 =
(

0 1
−1 3

)
=
(
3 −1
1 0

)−1
we have by Theorem 4.20

η (2 ( 1 0
2 1 ) (τ)) = η (( 1 0

1 1 ) (2τ)) = ε(1, 0, 1, 1)(−i(2τ + 1))1/2η(2τ)

η (3 ( 1 0
2 1 ) (τ)) = η

(
α−13 α3 ( 3 0

2 1 ) (τ)
)

= η
(
α−13

(
1 −1
0 3

)
(τ)
)

= ε(3, 1, 2, 1)(−i(2τ/3− 2/3 + 1))1/2η(τ/3− 1/3)

η (( 1 0
2 1 ) (τ)) = ε(1, 0, 2, 1)(−i(2τ + 1))1/2η(τ)

η (6 ( 1 0
2 1 ) (τ)) = η (( 3 0

1 1 ) (2τ)) = η
(
α−16 α6 ( 3 0

1 1 ) (2τ)
)

= η
(
α−16 ( 1 1

0 3 ) (2τ)
)

= ε(3,−1, 1, 0)(−i(2τ/3 + 1/3))1/2η(2τ/3 + 1/3)
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with

ε(1, 0, 1, 1) = exp(πi(2/12 + s(−1, 1))) = exp(πi/6)

ε(3, 1, 2, 1) = exp(πi(4/24 + s(−1, 2))) = exp(πi/6)

ε(1, 0, 2, 1) = exp(πi(2/12 + s(−1, 2))) = exp(πi/6)

ε(3,−1, 1, 0) = exp(πi(3/12 + s(0, 1))) = exp(πi/4)

Hence, we get

j6 (( 1 0
2 1 ) (τ)) =

e3πi/6(−i(2τ + 1))3/2η(2τ)3e9πi/6(−i(2τ/3 + 1/3))9/2η(τ/3− 1/3)9

e3πi/6(−i(2τ + 1))3/2η(τ)3e9πi/4(−i(2τ/3 + 1/3))9/2η(2τ/3 + 1/3)9

= e−3πi/4
η(2τ)3η(τ/3− 1/3)9

η(τ)3η(2τ/3 + 1/3)9
.

We can write η(τ) = q1/24I(q) with limq→0 I(q) = 1. Then, η(τ/3 − 1/3) =

e−πi/36q1/72I(e−2πi/3q1/3) and η(2τ/3 + 1/3) = eπi/36q1/36I(e2πi/3q2/3). Therefore,

lim
τ→∞

j6 (( 1 0
2 1 ) (τ)) = e−3πi/4e−πi/2 lim

q→0

q1/4q1/8

q1/8q1/4
= e3πi/4.
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