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Abstract

Topological insulators can be classified depending on the symmetries and dimension of

the physical system. The classification often involves advanced mathematical tools. The

goal of this thesis is to understand the classification in low dimensions using elementary

tools from topology and differential geometry. Our direct approach without relying on

the bulk-boundary correspondence makes the classification more accessible to students

who are new to the subject.

We classify the topological insulators via homotopy theory. For each symmetry class in

dimension 0, 1 and 2, we either define an index in terms of equivariant vector bundles to

distinguish between different homotopy classes or we show that there is only one homo-

topy class. For the Z2-indices, we discuss how they are related to the higher dimensional

Z or Z2-index. Moreover, we provide examples to show that the indices defined are in-

deed non-trivial.
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1 Introduction

In 2016, David J. Thouless, F. Duncan M. Haldane, and J. Michael Kosterlitz were awarded the

Nobel Prize in Physics “for theoretical discoveries of topological phase transitions and topological

phases of matter” [14]. These topological phases occur in different physical systems such as

topological insulators, superconductors and superfluids and can be classified depending on the

symmetries and dimension of the physical system [12]. Up to now, this classification has been

confirmed experimentally to some extent [4]. For example, the Haldane model [3] and the Kane-

Mele model [7] describe interesting topological insulators that have been observed experimentally

[6, 9].

There are several approaches to classify topological insulators [8], e.g. via K-theory, via

isomorphy classes or via homotopy theory. The classification often involves advanced mathe-

matical tools and is not fully explained. Thus, for many students and scientists it is difficult

to understand the classification in detail. The goal of this thesis is to explain the classification

of topological insulators in low dimensions using elementary tools from topology and differen-

tial geometry. We choose to classify the topological insulators via homotopy theory, because it

is the strongest classification method taking into account all of the structure. Our direct ap-

proach without making use of the bulk-boundary correspondence makes the classification more

accessible to students who are new to the subject.

For ten distinct symmetry classes [1] we consider topological insulators in dimensions 0, 1

and 2. In some cases, all topological insulators can be deformed into one another and we verify

that there is only a trivial homotopy class. When there are distinct homotopy classes, we want

to distinguish them. In this case, we first define equivariant vector bundles that carry all the

relevant information about the topological insulator. In a second step, we define indices allowing

us to distinguish between the vector bundles. For class A the 2D-index is known to be given by

a Chern number of such a vector bundle. Moreover, for class AII an index is defined in [2]. For

symmetry classes C and D it turns out that the index is again given by a Chern number. For

class C the index can only take even values. Furthermore, for class D we show that the parity

of the 2D-index is related to the 1D-index. For class DIII the 2D-index can be defined as for

AII. Also here we examine the relationship of 1D- and 2D-indices.

Our work could be extended in several ways. First, in order to fully explain the classification,

one would also have to check that topological insulators with the same index are equivalent. Here

we only show this in a few cases. Second, the work could be extended to higher dimensions.

Third, one could have a closer look at physical models with non-zero indices.

The thesis is structured as follows. In Section 2, we establish the general setting. First, we

define different symmetry classes of lattice Hamiltonians. Second, for periodic Hamiltonians,

we explain how the symmetries emerge after Bloch decomposition. Third, we describe the

ideas behind the classification via indices. In Section 3, we go through the different symmetry

classes and explain the classification in dimensions 0, 1 and 2. Finally, we provide examples of

non-trivial Hamiltonians in dimension 2 in Section 4.

I would like to thank Prof. Dr. Gian Michele Graf for taking the time to supervise my work,

for providing new insights and for our enlightening discussions.
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1.1 Notation

� Let GL(n) := GL(n,C).

� For an operator H the spectrum of H is denoted by σ(H).

� For the d-dimensional torus we write Td = (S1)d.

� Identify Td with (R/2πZ)d. Let τ : Td → Td be the map k 7→ −k.

� Let γ1 := {0} × S1, γ2 := S1 × {π}, γ3 := {π} × S1, γ4 := S1 × {0}.

2 Preliminaries

For m,n ∈ Zd let

δm,n =

{
1 if n = m

0 else.

The sequences δ(m) := (δm,n)n∈Zd form an orthonormal basis of the space `2(Zd,C).

Definition 2.0.1. A lattice Hamiltonian on a d-dimensional lattice is a self-adjoint operator

H : `2(Zd,CN ) → `2(Zd,CN ) which is local, i.e. there is a constant C > 0 such that for all

m,n ∈ Zd with ‖m− n‖ > C :

(δ(m)⊗ vm,
∑
n∈Zd

H(δ(n)⊗ vn)) = 0

for any {vn}n∈Zd ⊂ CN . The number N is the number of internal degrees of freedom.

Example 2.0.2. A nearest neighbour hopping Hamiltonian is local with C = 1.

Remark 2.0.3. Let L := (CN )
Zd

be the space of all CN -valued functions on Zd. A Hamiltonian

H : `2(Zd,CN )→ `2(Zd,CN ) can be extended to a map L→ L by the locality condition.

2.1 Symmetries

Definition 2.1.1. Let H be a self-adjoint operator. We say that H has

(i) chiral symmetry if there is a unitary operator Π such that {H,Π} = HΠ + ΠH = 0 and

Π2 = c1 for some c ∈ C.

(ii) even or odd particle hole symmetry (PHS) if there is an antiunitary operator Σ such that

{H,Σ} = HΣ + ΣH = 0 and Σ2 = 1 or Σ2 = −1, respectively.

(iii) even or odd time-reversal symmetry (TRS) if there is an antiunitary operator Θ such that

[H,Θ] = HΘ−ΘH = 0 and Θ2 = 1 or Θ2 = −1, respectively.

In order to obtain a topological insulator, we want the Hamiltonian to have a spectral gap.

We observe the following.

Proposition 2.1.2. For a self-adjoint operator H with chiral symmetry or PHS the spectrum

is preserved under the map ε : R→ R : λ 7→ −λ.
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Symmetry Dimension d

Class θ Σ Π 1 2 3 4 5 6 7 8 or 0

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 1: The periodic table of topological matter. [12]

Proof. Let λ be an eigenvalue of H and v 6= 0 a corresponding eigenvector. In the chiral case,

since Π is unitary it is injective and thus Πv 6= 0. Observe that HΠv = −ΠHv = −λΠv. Thus

Πv is an eigenvector of H with eigenvalue −λ. For the PHS case, since Σ is antiunitary it is

injective and thus Σv 6= 0. Because λ is real we have again HΣv = −ΣHv = −λ̄Σv = −λΣv.

So Σv is an eigenvector of H with eigenvalue −λ.

The only fixed point of ε is 0. The value 0 is thus distinguished among the possible eigenvalues

of H. This motivates us to choose the spectral gap at 0 for chiral and PHS.

Definition 2.1.3. In Table 1 different classes of Hamiltonians are defined. A certain symmetry

is present if the corresponding entry is nonzero. Moreover, for the operators Θ and Σ the

entry ±1 indicates whether the symmetry is even or odd. Additionally, the Hamiltonian has a

spectral gap µ /∈ σ(H). For symmetry classes A, AI and AII the gap can be at any value µ ∈ R.

Otherwise we assume that µ = 0. The operators Σ and Θ are assumed to commute if H enjoys

both PHS and TRS.

Remark 2.1.4. Note that if two different symmetries are present, this implies that the third

one is present as well. This is why there are only 10 classes.

Assumption 2.1.5. For lattice Hamiltonians we assume that the symmetries act only on the

internal degrees of freedom. Formally, let H : `2(Zd,CN ) → `2(Zd,CN ) and let (vn)n∈Zd ∈
`2(Zd,CN ). Then the symmetry operators act like Π(vn)n∈Zd = (Π̂vn)n∈Zd , Σ(vn)n∈Zd =

(Σ̂vn)n∈Zd and Θ(vn)n∈Zd = (Θ̂vn)n∈Zd for some unitary operator Π̂ and antiunitary operators

Σ̂ and Θ̂ with Σ̂2 = ±1 and Θ̂2 = ±1.

2.2 Periodic Hamiltonian

For ψ ∈ L = (CN )
Zd

we write (ψ)m or ψm for the entry at m ∈ Zd. We define translation

operators on the vector space L as follows:

Definition 2.2.1. Let n ∈ Zd. The translation by n, denoted by Tn is defined as

(Tnψ)m := ψm−n
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for every ψ ∈ L.

Remark 2.2.2. Note that for all m,n ∈ Zd: Tm+n = TmTn = TnTm.

Definition 2.2.3. A lattice Hamiltonian on a d-dimensional lattice is periodic if for all n ∈ Zd

TnH = HTn.

For a local periodic lattice Hamiltonian H we can do a Bloch decomposition. Following

Section 8.2. in [13] we obtain the linear isometric bijection

`2(Zd,CN )→
∫ ⊕
Td

H(k)dk

ψ = (ψn)n 7→

k 7→ 1

(2π)d/2

∑
n∈Zd

eiknTnψ


1

(2π)d/2

∫
Td
ψ(k)dk 7→(k 7→ ψ(k))

where H(k) = {ψ ∈ L|∀n ∈ Zd : Tnψ = e−iknψ}. There is an isomorphism ιk : H(k) ∼= CN

given through (ψn)n 7→ ψ0 with inverse ψ0 7→ (eiknψ0)n. So we obtain another linear isometric

bijection

`2(Zd,CN )→
∫ ⊕
Td

CNdk

ψ = (ψn)n 7→

k 7→ 1

(2π)d/2

∑
n∈Zd

eiknψ−n


(

1

(2π)d/2

∫
Td
ψ0(k)eikndk

)
n

7→(k 7→ ψ0(k))

Note that H(H(k)) ⊂ H(k) since for all k ∈ Td, v ∈ CN and m ∈ Zd we have

TmH(eiknv)n = HTm(eiknv)n = e−ikmH(eiknv)n.

This means that for every k ∈ Td, v ∈ CN there is a vector w ∈ CN such that

(eiknw)n = H(eiknv)n. (1)

For the Hamiltonian H the Bloch decomposition gives H =
∫ ⊕
Td H(k)dk with

H(k)v = w(k, v) =
(
H(eiknv)n

)
0

for any k ∈ Td and v ∈ CN . For every k ∈ Td the operator H(k) is self-adjoint and for a fixed

basis of CN the matrix elements of H(k) depend smoothly on k. Moreover, for the spectrum we

have

σ(H) =
⋃
k∈Td

σ(H(k)).
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For details see Section XIII.16. in [11]. In particular, if the spectrum of H is gapped, i.e.

µ /∈ σ(H), then also every H(k) has a spectral gap at µ.

Identify Td with (R/2πZ)d. Let τ : Td → Td be the map k 7→ −k.

Proposition 2.2.4. The symmetries Σ,Θ and Π induce the following symmetries in the Bloch

decomposition:

(i) Σ̂ = ιk ◦ Σ ◦ ι−1
k with Σ̂H(k) = −H(τk)Σ̂,

(ii) Θ̂ = ιk ◦Θ ◦ ι−1
k with Θ̂H(k) = H(τk)Θ̂,

(iii) Π̂ = ιk ◦Π ◦ ι−1
k with Π̂H(k) = −H(k)Π̂.

Proof. (i) Let v ∈ Cn. Then ιk ◦ Σ ◦ ι−1
k v = (Σ(eiknv)n)0 = ((e−iknΣ̂v)n)0 = Σ̂v. Moreover,

Σ̂H(k)v = (Σ(eiknH(k)v)n)0 = (ΣH(eiknv)n)0 by Eq. (1). Since by assumption ΣH = −HΣ,

we obtain Σ̂H(k)v = (−HΣ(eiknv)n)0 = −(H(Σ̂eiknv)n)0. Using the antilinearity of Σ and the

definition of H(k) we further get Σ̂H(k)v = −(H(e−iknΣ̂v)n)0 = −H(τk)Σ̂v. The proof of (ii)

and (iii) works analogously.

Let E = Td × CN be the trivial bundle over the torus. Let H : `2(Zd,CN )→ `2(Zd,CN ) be

a periodic local Hamiltonian.

Proposition 2.2.5 (Cf. 8.2.25 and 8.2.26 in [13]). Let P be a projection associated to an isolated

part of σ(H). Then we may decompose P as

P =

∫ ⊕
Td
P (k)dk.

Moreover, dim(im(P (k)) is constant in k. Thus there is a subbundle of E with fibres im(P (k)) ⊂
Ek.

Definition 2.2.6. Let H be a Hamiltonian on `2(Zd,CN ) and let µ /∈ σ(H). Then the Fermi

projection Pµ is the projection associated to σ(H) ∩ (−∞, µ).

2.3 Classification

Let H be a local periodic Hamiltonian on `2(Zd,CN ) belonging to a certain symmetry class

defined in Table 1. Through Bloch decomposition we obtain a smooth family H on Td of self-

adjoint operators on CN with symmetry properties as described in Proposition 2.2.4. Motivated

by this, we want to classify continuous families H on Td of self-adjoint operators on CN for each

symmetry class.

Two families are equivalent if they may be deformed continuously into one another while

keeping the spectral gap and the symmetry property intact. Formulated in more mathematical

terms this is the following:

Definition 2.3.1. Fix the symmetry operators Θ, Σ and Π. Given these operators, let H1, H2 :

Td → CN×N belong to the same symmetry class. Then H1 is equivalent to H2 if there is a

homotopy F : Td× [0, 1]→ CN×N between H1 and H2 and a continuous map µ : [0, 1]→ R such

that for all t ∈ [0, 1] the map F (·, t) belongs to the same symmetry class and has spectral gap

at µ(t).
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How many equivalence classes are there for each symmetry class? To answer this question it

is useful to label the different equivalence classes with an index, which assigns a different number

to every equivalence class. It is known how many equivalence classes there are. For a sufficiently

large number of internal degrees of freedom, the equivalence classes can be labelled by Z, Z2 or 0.

The results are listed in Table 1 for different dimensions of the lattice and different symmetries.

The list repeats periodically, i.e. the entries are equal for dimensions d and d+8. There are some

rules how to read the entries of Table 1. First of all, the number of internal degrees of freedom

lying above and below the spectral gap has to be sufficiently large. In Section 4.1 we will see

that for class A in dimension d = 2, there has to be at least one internal degree of freedom above

and below the spectral gap to admit a non-trivial index. Secondly, an entry in dimension d

counts the equivalence classes of Hamiltonians that have the same lower dimensional Z-indices.

Note that the all Z2-indices are part of a sequence Z2,Z2,Z when increasing the dimension d.

The Z2-indices are related to the Z-index in this sequence.

In order to show that certain indices vanish, the following results will be useful.

Proposition 2.3.2. Let X be a topological space and let f : X → X be a continuous involution.

Let I ∈ A := {x ∈ X|f(x) = x}. Let AI denote the connected component of A containing I. Let

G : S1 → X be a continuous map satisfying G(τk) = f(G(k)) and G(k∗) ∈ AI for k∗ ∈ {0, π}.

(i) Then there is a homotopy F1 : S1 × [0, 1] → X satisfying F1(τk, t) = f(F1(k, t)) and

F1(·, 0) = G and F1(k∗, 1) = I.

(ii) Let Ĝ := F1(·, 1). If the map Ĝ|[0,π] is homotopic to the constant map I relative to the

endpoints, then there is a homotopy F2 : S1 × [0, 1] → X between G and I such that

F2(τk, t) = f(F2(k, t)).

Proof. (i) Let α : {0, π} × [0, 1] → AI be a continuous map with α(k∗, 0) = G(k∗) and

α(k∗, 1) = I. There is a map F1 : [0, π] × [0, 1] → X with F1(·, 0) = G(·) extending

α, because {0, π} × [0, 1] ∪ [0, π] × {0} is a retract of [0, π] × [0, 1]. Extend F1 to S1 by

F1(τk, t) = f(F1(k, t)).

(ii) Let F be the homotopy between F1(·, 1)|[0,π] and I relative to {0, π}. Then let F (τk, t) :=

f(F (k, t)) and F2(k, t) =

{
F1(k, 2t) for t ∈ [0, 1/2]

F (k, 2t− 1) for t ∈ [1/2, 1].

Let γ1 := {0} × S1, γ2 := S1 × {π}, γ3 := {π} × S1, γ4 := S1 × {0} ⊂ T.

Proposition 2.3.3. Let X be a topological space and f : X → X a continuous involution. Let

I ∈ A := {x ∈ X|f(x) = x}. Let AI denote the connected component of A containing I. Let

G : T→ X be a continuous map satisfying G(τk) = f(G(k)) and G(k∗) ∈ AI for all fixed points

τk∗ = k∗.

(i) Then there is a homotopy F1 : T × [0, 1] → X satisfying F1(τk, t) = f(F1(k, t)) and

F1(·, 0) = G and F1(k∗, 1) = I.
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(ii) Let Ĝ := F1(·, 1). If π2(X) = 0 and for all γi the map Ĝ|γi|[0,π] is homotopic to the constant

map I relative to the endpoints, then G : T → X is homotopic to the constant map I via

a homotopy F2 satisfying F2(τk, t) = f(F2(k, t)).

Proof. (i) By Proposition 2.3.2 (i), there is a continuous map F1 : (γ1 ∪ γ3)× [0, 1] satisfying

F1(τk, t) = f(F1(k, t)) and F1(k, 0) = G(k) for k ∈ γ1 ∪ γ3 and F1(k∗, 1) = I for all

fixed points of T. One can extend F1 to a map F1 : [0, π] × S1 × [0, 1] → X such that

F1(k, 0) = G(k), because [0, π]×S1×{0}∪{0, π}×S1×[0, 1] is a retract of [0, π]×S1×[0, 1].

Then extend F1 to T× [0, 1] through F1(τk, t) = f(F1(k, t)).

(ii) For all γi let F i be the homotopy between Ĝ|γi|[0,π] and I relative to the endpoints. Then

we can extend F i through F i(τk, t) = f(F i(k, t)) to give a homotopy between Ĝ|γi and

I. Let F3 : (γ1 ∪ γ3 ∪ γ2|[0,π]) × [0, 1] → X be given by F (k, t) = F i(k, t) if k ∈ γi.

There is an extension F3 : [0, π] × S1 × [0, 1] → X of F3 satisfying F3(k, 0) = Ĝ(k)

because (γ1 ∪ γ3 ∪ γ2|[0,π])× [0, 1]∪ [0, π]×S1×{0} is a retract of [0, π]×S1× [0, 1]. Then

G̃ := F3(·, 1) : [0, π]×S1 → X is constantly equal to I on γ1∪γ3∪γ2|[0,π]. So we can view G̃

as a map from [0, π]×S1/(γ1∪γ3∪γ2|[0,π]) ∼= S2 to X. Since π2(X) = 0, there is a homotopy

F4 : [0, π]× S1 → X between G̃ and I such that F4(k, t) = I for k ∈ γ1 ∪ γ3 ∪ γ2|[0,π]. We

can further extend F3 and F4 to T × [0, 1] via Fi(τk, t) = f(Fi(k, t)) for i = 3, 4. Finally,

let F2(k, t) =


F1(k, 3t) for t ∈ [0, 1/3]

F3(k, 3t− 1) for t ∈ [1/3, 2/3]

F4(k, 3t− 2) for t ∈ [2/3, 1].

3 Topological indices in low dimensions

For every symmetry class we begin with a continuous family H of self-adjoint operators on CN

with the corresponding symmetry properties. In certain cases we define a corresponding vector

bundle carrying all the important information. The vector bundles are said to be equivalent

if and only if the corresponding Hamiltonians are equivalent. Equivalent vector bundles are

isomorphic, but the converse is not true in general. We focus on dimensions d ∈ {0, 1, 2} and

explain the entries in Table 1. If the entry is 0, the aim is to show that indeed, no non-trivial

index can be defined. If the entry is non-trivial, we want to formulate the index in terms of the

vector bundle corresponding to H. We also want to understand the relationship of the Z2- and

Z-indices.

3.1 A

Any continuous family H = {H(k) : k ∈ Td} of self-adjoint operators on CN with spectral gap

µ /∈ σ(H(k)) for all k ∈ Td belongs to symmetry class A. Let P−µ (k) denote the Fermi-projection

and P+
µ (k) the projection associated to σ(H) ∩ (µ,∞). From H we obtain the vector bundles

E±(k) = {(k, P±µ (k)(CN ))} over Td with E = E+ ⊕ E− = Td × CN .

Definition 3.1.1. A d-dimensional bundle in symmetry class A is a complex vector bundle of

the form E = E+⊕E− = Td×CN , where the fibres E+(k) and E−(k) are orthogonal subspaces

of CN for every k ∈ Td.
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Remark 3.1.2. Even though the bundle E is trivial, the subbundles E+ and E− can be non-

trivial.

Given a vector bundle E = E+⊕E− in class A, we can define Ĥ(k) = 2P+
µ (k)− 1. Then Ĥ

forms again a continuous family of self-adjoint operators with spectral gap at 0.

Remark 3.1.3. Let H be in class A. Then H is equivalent to the corresponding Ĥ.

Proof sketch. Let H : Td → CN×N be in class A with spectral gap at µ. For every k ∈ Td we

can write H(k) =
∑

i λi(k)Pi(k), where Pi(k) is the orthogonal projection onto the eigenspace

to eigenvalue λi(k). Note that Pi and λi may not be continuous since the number of distinct

eigenvalues and the dimensions of the eigenspaces may vary. For t ∈ [0, 1] and λ ∈ R let

f(λ, t) = λ(1− t) + t sgn(λ− µ). Now let F : Td × [0, 1]→ CN×N be given by

F (k, t) =
∑
i

f(λi(k), t)Pi(k).

Then for every t ∈ [0, 1] the map F (·, t) is continuous and in class A with spectral gap at µ(1−t).
Moreover, F is a homotopy between H and Ĥ.

For dimension d ∈ {0, 1, 2} we want to define an index IdA for vector bundles in class A.

Then the index of H will be IdA(H) := IdA(E).

Definition 3.1.4. In dimension d = 0, the index of a vector bundle E = E+ ⊕ E− is

I0
A(E) := rank(E+)− rank(E−).

Proposition 3.1.5. In dimension d = 0, for fixed N any two Hamiltonians H1 and H2 with

I0
A(H1) = I0

A(H2) are equivalent.

Proof. Let I0
A(H1) = I0

A(H2) = m. We know that Hi is equivalent to Ĥi for i = 1, 2 by

Remark 3.1.3. Pick unitary frames v±i of E±i . Then the frames vi = (v+
i , v

−
i ) lie in U(N). Since

U(N) is path connected, there is a path v : [0, 1]→ U(N) with v(0) = v1 and v(1) = v2. Then

F (t) = v(t)

(
I(N+m)/2 0

0 −I(N−m)/2

)
v(t)∗

is a homotopy between Ĥ1 and Ĥ2 which belongs to class A for every t ∈ [0, 1]. So Ĥ1 and Ĥ2

and thus also H1 and H2 are equivalent.

For a given number N of internal degrees of freedom, the index I0
A can take any value

between −N and N . Thus for N →∞, the index I0
A can take any integer value. This justifies

the entry Z for A in d = 0 in Table 1.

Proposition 3.1.6. The frame bundle of any complex vector bundle over S1 admits a global

section.

Proof. Let E be a N -dimensional complex vector bundle over S1 = R/2πZ. Then E induces a

complex vector bundle Ė over [−π, π]. Since [−π, π] is contractible, there is a frame v : [−π, π]→
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F (Ė). Moreover, there is a matrix G ∈ GL(N) such that v(−π) = v(π)G. Since GL(N) is path-

connected, there is a path γ : [−π, π] → GL(N) connecting γ(−π) = IN to γ(π) = G. Then

w(k) := v(k)γ(k) is again a section of F (Ė) with w(−π) = w(π). So w actually defines a global

section of F (E).

Fact 3.1.7. Let N ∈ Z>0. Two continuous maps S1 → U(N) are homotopic if and only if their

determinant has the same winding number.

Proposition 3.1.8. In dimension d = 1, for fixed N any two Hamiltonians H1 and H2 with

I0
A(H1) = I0

A(H2) are equivalent.

Proof. Let I0
A(H1) = I0

A(H2) = m. We know that Hj is equivalent to Ĥj for j = 1, 2 by

Remark 3.1.3. By Proposition 3.1.6 we can pick unitary frames v±j : S1 → E±j . Then the frames

vj = (v+
j , v

−
j ) : S1 → U(N) have winding numbers lj = W(det vj). We obtain unitary frames

ṽj of E+
j ⊕ E

−
j with vanishing winding number by setting ṽj(k) = vj(k)

(
e−iklj 0

0 IN−1

)
. By

Fact 3.1.7, there is a homotopy F : S1 × [0, 1]→ U(N) between ṽ1 and ṽ2. Then

F (k, t)

(
I(N+m)/2 0

0 −I(N−m)/2

)
F (k, t)∗

is a homotopy between Ĥ1 and Ĥ2, which lies in class A for every t ∈ [0, 1]. So Ĥ1 and Ĥ2 and

thus also H1 and H2 are equivalent.

Thus we have verified that the entry in Table 1 for A in d = 1 must be 0. Now we move on

to d = 2. Let Ṫ = [−π, π]×S1 denote the cut torus. For a vector bundle E over T let Ė denote

the induced bundle on Ṫ.

Proposition 3.1.9. Let Ė be a complex vector bundle over Ṫ. There is a global frame v : Ṫ→
F (Ė).

Proof. By Proposition 3.1.6, there is a section v : {0} × S1 → F (Ė). Since {0} × S1 is a

deformation retract of Ṫ, we can extend v to a frame v : Ṫ→ F (Ė) by Theorem 9.1 in [10].

Definition 3.1.10. Let E = E+ ⊕E− be in class A, let n = rank(E−). Let v : Ṫ→ F (Ė−) be

a global frame. There is a map T : S1 → GL(n) satisfying

v(−π, k2)T (k2) = v(π, k2)

for all k2 ∈ S1. Let I2
A(E) := W(detT ) be the winding number of detT .

Lemma 3.1.11. The index I2
A is well-defined, i.e. independent of the choice of the frame v.

Proof. Consider two frames v, w : Ṫ → F (Ė−). They are related by v(k) = w(k)G(k) for some

G : Ṫ→ GL(n). Let v(−π, k2)T1(k2) = v(π, k2) and w(−π, k2)T2(k2) = w(π, k2). We have

w(−π, k2)G(−π, k2)T1(k2) = v(−π, k2)T1(k2) = v(π, k2)

= w(π, k2)G(π, k2) = w(−π, k2)T2(k2)G(π, k2).
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Thus,

G(−π, k2)T1(k2) = T2(k2)G(π, k2).

Note that the winding numbers W(detG(−π, ·)) = W(detG(π, ·)) because G : [−π, π]× S1 →
GL(n) is a homotopy between the two maps. So W(detG(−π, ·)) + W(detT1) = W(detT2) +

W(detG(π, ·)) implies W(detT1) = W(detT2). Hence, the index is independent of the frame.

Remark 3.1.12. The number I2
A(E) is precisely the first Chern number Ch1(E−). This is

explained in [13] in Section 8.4.

Remark 3.1.13. Since E = E+ ⊕ E− = T× CN is trivial, we have

0 = Ch1(E) = Ch1(E+) + Ch1(E−).

Thus, choosing I2
A to be the first Chern number of E+ instead of E− would amount to a change

of sign.

3.2 AIII

Definition 3.2.1. Let H = {H(k) : k ∈ Td} be a continuous family of self-adjoint operators on

CN with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H has chiral symmetry if there

is an operator Π : CN → CN such that

(i) Π is linear and unitary,

(ii) Π2 = c1 for some c ∈ C,

(iii) for all k ∈ T,

H(k)Π = −ΠH(k).

Proposition 3.2.2. Let H = {H(k) : k ∈ Td} have chiral symmetry. Then there is a basis B

of CN for which Π = λIn ⊕−λIn and

H(k) =

(
0 h(k)∗

h(k) 0

)

for some continuous h : Td → GL(N).

Proof. Since Π is unitary it is diagonalisable and 0 /∈ σ(Π). Moreover if v is an eigenvector of

Π with eigenvalue λ, then ΠH(k)v = −H(k)Πv = −λH(k)v for any k ∈ Td. Thus −λ is an

eigenvalue of Π. Let EΠ,λ be the eigenspace of Π to eigenvalue λ. Observe that H(EΠ,λ) ⊂ EΠ,−λ

and H(EΠ,−λ) ⊂ EΠ,λ. Because 0 /∈ σ(H), the operator H is injective. Hence, dim(EΠ,λ) ≤
dim(EΠ,−λ) ≤ dim(EΠ,λ). Thus equality must hold. Since Π2 = c1, every eigenvalue λ of Π

satisfies λ2 = c. So Π has precisely the two eigenvalues ±
√
c. Hence, there is a basis B of CN

consisting of eigenvectors of Π for which Π = λIn ⊕−λIn with N = 2n.
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In the basis B the condition H(k)Π = −ΠH(k) then implies

H(k) =

(
0 h(k)∗

h(k) 0

)

for some h : Td → GL(n). The map h is continuous by the continuity of H.

Remark 3.2.3. Note that for any continuous map h : Td → GL(n,C) the conditions 0 /∈
σ(H(k)) and {H(k),Π} = 0 are automatically satisfied. So two chiral Hamiltonians H(k) and

H̃(k) are equivalent if and only if the corresponding h(k) and h̃(k) are homotopic as maps from

Td to GL(n,C). Thus, the indices for the symmetry class AIII label the homotopy classes of

maps h : Td → GL(n,C).

Remark 3.2.4. Since GL(n,C) is path connected, the 0D-index vanishes for AIII.

Fact 3.2.5. The 1D-index is given through I1
AIII(H) = W(det(h)). Moreover, if for two con-

tinuous maps S1 → GL(n) the determinant has the same winding number, they are homotopic.

Example 3.2.6. For d = 1 we can choose h : S1 → GL(n) to be given by

h(k) =

(
eikl 0

0 In−1

)

for some l ∈ Z. Then for the corresponding Hamiltonian we have I1
AIII(H) = l.

This gives the entry Z in Table 1 for AIII in d = 1. In 2D the situation is as follows.

Proposition 3.2.7. Two maps h, h̃ : T → GL(n) are homotopic if and only if for every path

γ : S1 → T the maps h ◦ γ and h̃ ◦ γ are homotopic.

Combining Fact 3.2.5 with Proposition 3.2.7 we obtain:

Corollary 3.2.8. In 2D, if two families of Hamiltonians H(k) and H̃(k) in class AIII cannot

be distinguished by the 1D-index, i.e. for all γ : S1 → T it holds that I1
AIII(H◦γ) = I1

AIII(H̃◦γ),

then H(k) and H̃(k) are homotopic. This justifies the entry 0 in Table 1.

Before we prove Proposition 3.2.7, we need the following results.

Proposition 3.2.9. The second homotopy groups π2(GL(n,C)) = π2(U(n)) = 0.

Proof. The space GL(n,C) is homotopy equivalent to U(n) [5]. For n = 1 we have U(1) = S1,

so π2(U(1)) = π2(S1) = 0. Consider the fibre bundle

U(n− 1)→ U(n)→ U(n)/U(n− 1),

where ι : U(n− 1)→ U(n) is given by

ι(A) =

(
1 0

0 A

)
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and π : U(n)→ U(n)/U(n− 1) is the quotient map.

By the long exact sequence for fibre bundles (see [5], Section 4.2.) we obtain the long exact

sequence

...→ π3(U(n)/U(n− 1))→ π2(U(n− 1))→ π2(U(n))→ π2(U(n)/U(n− 1))→ ...

Note that U(n)/U(n− 1) is homeomorphic to S2n−1 through the map

[(u1, u2, ..., un)] 7→ u1,

where ui denotes the ith column. This map is well defined because the right action of U(n− 1)

on U(n) leaves the first column invariant. The map is clearly surjective and injective.

We obtain the exact sequence

...→ π3(S2n−1)→ π2(U(n− 1))→ π2(U(n))→ π2(S2n−1)→ ...

For n ≥ 3, the two outer terms vanish and thus π2(U(n)) ∼= π2(U(n−1)). For n = 2, the second

and the last term vanish, thus also the third term π2(U(2)) must vanish. So inductively, we

obtain π2(U(n)) = 0 for n ≥ 1.

Proof of Proposition 3.2.7. By Fact 3.2.5 a map f : S1 → GL(n) is homotopic to a constant

map if and only if the winding number W(det f) vanishes. Identify S1 with R/2πZ. Let

α : S1 → S1 × S1 : x 7→ (x, 0) and β : S1 → S1 × S1 : x 7→ (0, x).

Case 1: Assume h : T → GL(n) is trivial in 1D, i.e. for all γ : S1 → T the map h ◦ γ
is homotopic to a constant map. Then W(det(h ◦ α)) = W(det(h ◦ β)) = 0. Thus there

is a homotopy f between S|S1×{0}∪{0}×S1 and the constant map In. Note that T × {0} ∪
(S1 × {0} ∪ {0} × S1) × [0, 1] is a retract of T × [0, 1]. Thus, by the homotopy extension

property [5], we can obtain a homotopy F : T × [0, 1] → GL(n) starting at h and extending

f . The map h̃ := F (·, 1) is constant on S1 × {0} ∪ {0} × S1. Thus, it can be viewed as a map

h̃ : T/(S1 × {0} ∪ {0} × S1) → GL(n). But T/(S1 × {0} ∪ {0} × S1) is homeomorphic to

S2. Therefore, h̃ induces a map S2 → GL(n) which by Proposition 3.2.9 is homotopic to the

constant map In. This homotopy induces a homotopy from h̃ to In on T. In total we see that

thus h is homotopic to the constant map In.

Case 2: Suppose h1, h2 : T → GL(n) are continuous and the winding numbers W(det(h1 ◦
α)) = W(det(h2◦α)) and W(det(h1◦β)) = W(det(h2◦β)). Consider h := h1h

−1
2 : T→ GL(n).

Then W(det(h ◦ α)) = W(det(h1 ◦ α) det(h2 ◦ α)−1) = W(det(h1 ◦ α)) −W(det(h2 ◦ α)) = 0

and analogously W(deth ◦β) = 0. By Case 1, there is a homotopy F : T× [0, 1]→ GL(n) from

h to In. Then F̃ : T× [0, 1]→ GL(n) given through F̃ (x, t) := F (x, t)h2(x) is a homotopy from

h1 = hh2 to h2 = Inh2.

3.3 AI

Definition 3.3.1. Let H(k) for k ∈ Td be a continuous family of self-adjoint operators on CN

with spectral gap µ /∈ σ(H(k)) for all k ∈ Td. We say that H has even time-reversal symmetry

if there is an operator Θ : CN → CN such that
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(i) Θ is antiunitary,

(ii) Θ2 = 1,

(iii) for all k ∈ T,

ΘH(k) = H(τk)Θ.

Remark 3.3.2. We can write Θ = UC for some U ∈ U(N) and the complex conjugation C.

The condition Θ2 = 1 implies that U is symmetric. Thus by Autonne-Takagi factorisation, there

is Q ∈ U(N) such that QUQT = IN . So after changing the basis by Q, we may assume that

Θ = C. In this basis, the condition ΘH(k) = H(τk)Θ then becomes

H(τk) = H(k). (2)

Definition 3.3.3. A bundle in class AI is a vector bundle of the form E = E+⊕E− = Td×CN ,

with an antiunitary map Θ : CN → CN such that

(i) the fibres E+(k) and E−(k) are orthogonal subspaces of CN for every k ∈ Td,

(ii) Θ2 = 1,

(iii) the orthogonal projections P±(k) onto E±(k) satisfy P±(τk)Θ = ΘP±(k).

Remark 3.3.4. Let H be in class AI. Let P− be the Fermi projection and P+ the projection

associated to σ(H) ∩ (0,∞). Let E±(k) = {(k, P±(k)(CN ))}. Then we obtain a bundle in class

AI. Conversely, Ĥ(k) := 2P+(k)−1 is self-adjoint, unitary and squares to 1 and belongs to class

AI.

Remark 3.3.5. Let H be in class AI. Then H is equivalent to the corresponding Ĥ.

Proof. Note that the homotopy F constructed in the proof of Remark 3.1.3 satisfies F (τk, t) =

F (k, t).

Let us first analyse the situation in 0D. As for class A, the number of negative eigenvalues

of H is homotopy invariant. So we can define an index in the same way.

Definition 3.3.6. Let H be a in class AI in 0D. Then I0
AI(H) := rank(E+)− rank(E−).

Proposition 3.3.7. Let H1 and H2 be in class AI in 0D on CN . If I0
AI(H1) = I0

AI(H2) then

H1 can be deformed into H2 while keeping the symmetry and the spectral gap intact.

Proof. By Eq. (2) and Hermiticity, Ĥ1 and Ĥ2 are real and symmetric. Thus they are diago-

nalisable, i.e. Ĥi = Qi

(
IN−m 0

0 −Im

)
Q−1
i for Qi ∈ O(N) for i = 1, 2. We can choose the Qi

such that detQi = 1 by multiplying with

(
−1 0

0 IN−1

)
from the right if necessary. Then both

Qi lie in SO(N), which is path connected. Let Q(t) be a path in SO(N) from Q1 to Q2. Then

F (t) := Q(t)

(
IN−m 0

0 −Im

)
QT (t) is a homotopy between Ĥ1 and Ĥ2 satisfying the conditions

we need. By Remark 3.3.5 thus H1 and H2 are equivalent.
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Now let us consider the situation in 1D.

Proposition 3.3.8. Let E = E+ ⊕ E− be a bundle in AI over S1. There exist unitary frames

v± : S1 → F (E±) such that v±(τk) = v±(k).

Proof. Let m = rank(E+). For k∗ ∈ {0, π} we may pick real orthonormal frames v+(k∗) ∈
F (E+

k∗). Extend v+(0) to a frame ṽ+ over [0, π]. Then v+(π) = ṽ+(π)G+(π) for some G+(π) ∈
U(m). Since U(m) is path-connected, there is a path G+ : [0, π] → U(m) from Im to G+(π).

Then v+(k) := ṽ+(k)G+(k) extends the v+(k∗) we chose at the beginning. Now we extend

v+ to S1 by v+(τk) = v+(k). Analogously, we can obtain a frame v− : S1 → F (E−) with

v−(τk) = v−(k).

Proposition 3.3.9. The index for class AI in 1D must be trivial.

Proof. Let H be in class AI. Consider the corresponding bundle E = E+ ⊕ E− over S1, let

m = rank(E+). Let v± be frames as in Proposition 3.3.8. Let us write v = (v+, v−) and let

l := W(det v). Then w(k) := v(k)

(
sgn(det v(0))e−ikl 0

0 IN−1

)
is also a section of F (E+) ⊕

F (E−) satisfying w(τk) = w(k). Since 0 = W(detw) = 2W[0,π](detw), also W[0,π](detw) =

0. Applying Proposition 2.3.2 with X = U(N), I = IN , G = w and f being the complex

conjugation and noting that W[0,π](det Ĝ) = 0 by the reality condition at the endpoints, we

obtain a homotopy F : T× S1 → U(N) between w and IN such that F (τk, t) = F (k, t). Then

F (k, t)

(
Im 0

0 −IN−m

)
F (k, t)∗

is a homotopy between Ĥ and

(
Im 0

0 −IN−m

)
which preserves the spectral gap and the symme-

try property. By Remark 3.3.5 H is equivalent to Ĥ, showing that the index must vanish.

Now let us consider the situation in 2D.

Proposition 3.3.10. Let H be in class AI in 2D and E = E+ ⊕E− the corresponding bundle.

There are unitary frames v± : Ṫ→ F (Ė±) such that v±(τk) = v±(k) and v±(−π, k∗2) = v±(π, k∗2)

for k∗2 ∈ {0, π}.

Proof. Let m = rank(E+). By Proposition 3.3.8 there is a section v+ : {0} × S1 → F (Ė+)

satisfying v+(τk) = v+(k). Extend this section to v : [0, π]×S1 → F (Ė+). Then for k∗2 ∈ {0, π}
there are G(π, k∗2) ∈ U(m) such that v+(π, k∗2)G(π, k∗2) is real, because H(π, k∗2) is real. Pick a

loop G(π, ·) : S1 → U(m) extending G(π, 0) and G(π, π). Let l = W(detG(π, ·)), then there

exists a homotopy G : [0, π]×S1 → U(m) between G(0, k) =

(
eikl 0

0 Im−1

)
and G(π, ·). Now let

w+ : [0, π]× S1 → F (Ė+) be given by w+(k) = v+(k)G(k). Note that w+(0, τk2) = w+(0, k2).

Then choose w+(k) := w+(τk) for k ∈ [−π, 0] × S1. This gives a frame with all the properties

we wanted. The construction of v− is analogous.

Proposition 3.3.11. Let H be in class AI in 2D and E = E+ ⊕E− the corresponding bundle.

There are global unitary frames v± : T→ F (E±) such that v±(τk) = v±(k).
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Proof. Let m± = rank(E±). Let v± : Ṫ → F (Ė±) be frames as in Proposition 3.3.10. Let

v = (v+, v−). We need to find a map G : Ṫ → U(m+) ⊕ U(m−) such that w = vG is a global

frame satisfying the symmetry property, i.e. v(−π, ·)G(−π, ·) = v(π, ·)G(π, ·) and v(τk)G(τk) =

v(k)G(k). So G has to satisfy G(τk) = G(k) and v(π, k2)G(π, k2) = v(−π, k2)G(−π, k2) =

v(π, τk2)G(π, τk2).

For k2 ∈ [0, π] let us choose G(π, k2) = IN . Then for k2 ∈ [−π, 0] the condition

v(π, k2)G(π, k2) = v(π, τk2)G(π, τk2) = v(π, τk2) = v(−π, k2)

determines G(π, k2) = G+(π, k2)⊕G−(π, k2) ∈ U(m+)⊕ U(m−) uniquely, since

F (Ė±)|{−π}×S1 = F (Ė±)|{π}×S1 .

Let l± = W(detG±(π, ·)). There are homotopies f± : [0, π]×S1 → U(m±) between

(
eik2l

±
0

0 Im±

)

and G±(π, ·). For k ∈ [0, π]×S1 choose G(k) =

(
f+(k) 0

0 f−(k)

)
. Then G satisfies G(0, τk2) =

G(0, k2). Extend G to Ṫ through G(τk) = G(k). Then G has all the properties we needed.

Theorem 3.3.12. The index for class AI in 2D must be trivial.

Proof. Let H be in class AI. By Remark 3.3.5 we may assume that H only has eigenvalues ±1.

Let E = E+ ⊕ E− be the corresponding bundle and let m = rank(E+). Let v = (v+, v−) be

a global section as in Proposition 3.3.11. By continuity, Wγ1(det v) = Wγ3(det v) = l2 and

Wγ2(det v) = Wγ4(det v) = l1. Let

w(k) := v(k)

(
sgn(det v(0, 0))e−ik1l1e−ik2l2 0

0 IN−1

)
.

Then w is again a frame as in Proposition 3.3.11. Note that

H(k) = w(k)

(
Im 0

0 −IN−m

)
w(k)∗.

Moreover, the frame w satisfies 0 = Wγi(detw) = 2Wγi|[0,π](detw). Thus at all fixed points

of the torus, detw has the same sign. Since at k = (0, 0) the sign is positive, we have that at

all fixed points w(k∗) ∈ SO(N). Note that w satisfies the hypotheses of Proposition 2.3.3 (i)

with f being the complex conjugation, I = IN , w = G : T → U(N). So we obtain ŵ such

that ŵ(k∗) = IN . By the reality condition at the fixed points, the winding number of det ŵ

on any γi|[0,π] is still zero. Thus (ii) of Proposition 2.3.3 is satisfied and we obtain a homotopy

F : T× [0, 1]→ U(N) between w and IN such that F (τk, t) = F (k, t). Then

F (k, t)

(
Im 0

0 −IN−m

)
F (k, t)∗
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is a homotopy between H and

(
Im 0

0 −IN−m

)
which preserves the spectral gap and the sym-

metry property.

3.4 BDI

Definition 3.4.1. Let H = {H(k) : k ∈ Td} be a continuous family of self-adjoint operators on

CN with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H belongs to symmetry class

BDI if there are operators Θ,Σ : CN → CN such that

(i) Θ,Σ are antiunitary,

(ii) Θ2 = Σ2 = 1,

(iii) for all k ∈ T,

H(τk)Σ = −ΣH(k) and H(τk)Θ = ΘH(k),

(iv) ΘΣ = ΣΘ = Π.

Note that Π is unitary, squares to the identity and H(k)Π = −ΠH(k).

Remark 3.4.2. Let H be in symmetry class BDI. By Proposition 3.2.2 we can choose a basis

such that Π = In ⊕ −In, hence N = 2n. Write Θ = UC and Σ = SC for unitary matrices U

and S and the complex conjugation C. Since ΘΠ = ΠΘ, we have

U =

(
A 0

0 B

)
,

where A and B are n × n-matrices. The blocks A and B are unitary because Θ is antiunitary.

Moreover, Θ2 = 1 implies that A and B are symmetric. By Autonne-Takagi factorisation, there

exist unitary matrices Q1 and Q2 such that Q1AQ
T
1 = In and Q2BQ

T
2 = In. Let

Q =

(
Q1 0

0 Q2

)
.

Changing the basis by Q−1, we obtain Π = QΠoldQ
−1 = In ⊕−In and U = QUoldQ

T = In ⊕ In.

Consequently, S = UΠ = In ⊕−In. Moreover, {Π, H(k)} = 0 implies

H(k) =

(
0 h(k)∗

h(k) 0

)
, (3)

for some continuous h : Td → GL(n). The condition ΘH(k) = H(τk)Θ gives

h(τk) = h(k). (4)

Note that for given symmetries Θ,Σ,Π we can choose a basis such that the family H belongs

to class BDI if and only if H satisfies Eq. (3) and (4).

17



We want to classify the continuous families H in dimensions 0,1, and 2 satisfying Eq. (3) and

(4). In 0D, the condition in Eq. (4) becomes h ∈ GL(n,R). Since GL(n,R) has two connected

components distinguished by the sign of the determinant, we can define the index as follows:

Definition 3.4.3.

I0
BDI(H) := sgn(deth).

This explains the Z2 entry in Table 1 for BDI in 0D. In 1D, an index can be defined through

Definition 3.4.4.

I1
BDI(H) := W(deth).

Example 3.4.5. Note that

h(k) =

(
eikl 0

0 In−1

)
satisfies Eq. (4) for any l ∈ Z. The family H given by Eq. (3) then has index I1

BDI(H) = l.

Thus, the index I1
BDI can attain all values in Z.

Remark 3.4.6. Note that there is a relation between the indices I0
BDI and I1

BDI . The 1D-index

is even if and only if the 0D-indices a the fixed points are equal.

Proposition 3.4.7. The 2D-index for BDI vanishes, explaining the entry 0 in Table 1

Proof. Suppose H1 and H2 lie in the class BDI in 2D with N internal degrees of freedom and that

the lower dimensional indices agree, i.e. the 0D-index agrees at all fixed points and the 1D-index

agrees on γi for i ∈ {1, 2, 3, 4}. There is a map G : T→ GL(n) such that G(k)h2(k) = h1(k).

Eq. (4) implies G(τk) = G(k). Since the 0D-index agrees at all fixed points k∗, we have

sgn detG(k∗) = 1. Eq. (4) also implies W |[−π,0](deth1|γi) = W |[0,π](deth1|γi). Thus,

2W |[0,π](deth1|γi) = I1
BDI(h1|γi) = I1

BDI(h2|γi) = 2W |[0,π](deth2|γi),

and we conclude that W[0,π](detG|γi) = 0.

Thus G satisfies the assumptions of Proposition 2.3.3 with X = GL(n), I = In and f being

the complex conjugation. So we obtain a homotopy F1, which by the reality condition at the fixed

points has winding number W[−π,0](detF1(·, t)|γi) = W[0,π](detF1(·, t)|γi) = W[0,π](detG|γi) =

0 for every t. Thus Ĝ = F1(·, 1) satisfies the assumption of part (ii) of Proposition 2.3.3 and since

π2(GL(n,C)) = 0 by Proposition 3.2.9, we obtain a homotopy F2 between G and In satisfying

F2(τk, t) = F2(k, t). Then we can define h(k, t) := F2(k, t)h2(k), which defines a homotopy

between h1 and h2 satisfying h(τk, t) = h(k, t). Thus H1 can be deformed into H2 while keeping

the symmetry and the spectral gap intact. Hence, the 2D-index for BDI vanishes.

3.5 D

Definition 3.5.1. Let H(k) for k ∈ Td be a continuous family of self-adjoint operators on CN

with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H has even particle-hole symmetry

if there is an operator Σ : CN → CN such that

(i) Σ is antiunitary,
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(ii) Σ2 = 1,

(iii) for all k ∈ T,

ΣH(k) = −H(τk)Σ.

Let P−(k) be the Fermi projection and P+(k) the projection associated to σ(H) ∩ (0,∞).

Let E±(k) = {(k, P±(k)(CN ))}.

Proposition 3.5.2. The projections satisfy P−(τk)Σ = ΣP+(k).

Proof. Let H̃ = ΣHΣ−1. Denoting by H =
∑

λ λPλ the (unique) spectral decomposition of H,

that of H̃ is H̃ =
∑

λ λP̃λ, where P̃λ = ΣPλΣ−1, since λ ∈ R and the P̃λ remain orthogonal

projections. Thus P̃+ = ΣP+Σ−1 for P+ =
∑

λ>0 Pλ. Apply this to H = H(k), H̃ = −H(τk).

Thus a family of Hamiltonians with even PHS induces a bundle satisfying the following

definition.

Definition 3.5.3. A bundle with even particle hole symmetry is a vector bundle of the form

E = E+ ⊕ E− = Td × CN with an antiunitary map Σ : CN → CN such that

(i) the fibres E+(k) and E−(k) are orthogonal subspaces of CN for every k ∈ Td,

(ii) Σ2 = 1,

(iii) the orthogonal projections P±(k) onto E±(k) satisfy P−(τk)Σ = ΣP+(k).

Remark 3.5.4. If we take a bundle with even particle hole symmetry, then Ĥ(k) := 2P+(k)−1

is unitary, self-adjoint and satisfies Ĥ(τk)Σ = −ΣĤ(k), i.e. it has all the properties that the

original family of Hamiltonians had.

Remark 3.5.5. Because Σ2 = 1 is bijective, Σ defines a bijection between (Ek)
+ and (Eτk)

−.

Thus rank(E+) = dimE+(k) = dimE−(τk) = rank(E−). So rank(E) = N =: 2n is even.

Remark 3.5.6. We can write Σ = SC for a unitary S and a complex conjugation C. Moreover,

we may assume that

S =

(
0 In
In 0

)
.

Proof. The condition Σ2 = 1 implies that S is symmetric. Thus by Autonne-Takagi factorisation,

there is Q1 ∈ U(2n) such that Q1SQ
T
1 = I2n. Let

Q2 =
1√
2

(
In iIn
In −iIn

)
.

Changing basis by Q2Q1 brings the matrix S into the desired form.

From now on we will assume that S =

(
0 In
In 0

)
. First, let us study the situation in 0D and

1D. Let E = E+ ⊕ E− be a bundle with even PHS in 0D or 1D. There is a global frame v+ of
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E+ and we define a frame of E− by v−(k) := Σv+(τk). Then v(k) = (v+(k), v−(k)) is a frame

of E = E+ ⊕ E− satisfying

v(τk) = Σv(k)

(
0 In
In 0

)
. (5)

Remark 3.5.7. Let v be a unitary frame satisfying Eq. (5). At the fixed points τk∗ = k∗ where

v is defined, the number det v(k∗) ∈ {±1} is independent of the frame. So for a 0D-bundle

E in class D with v ∈ F (E) satisfying Eq. (5), the 0D-index is given through I0
D(E) = det v.

The 1D-index for a bundle E over S1 with symmetry D can be defined through I1
D(E) =

det(v(0)) det(v(π)), where v is any frame satisfying Eq. (5). Note that the indices I0
D and I1

D

are related. The 1D-index is trivial if and only if the 0D-indices at the fixed points are equal.

Proof. Suppose that we have two unitary frames v, w as in Eq. (5), let k∗ be a fixed point of τ . By

assumption Σ =

(
0 In
In 0

)
C, so taking the determinant of Eq. (5) gives det v(k∗) = det v(k∗).

Since v is unitary, det v(k∗) ∈ {±1}. The frames have the form w(k∗) = (w+(k∗),Σw+(k∗)) and

v(k∗) = (v+(k∗),Σv+(k∗)). There is a unitary matrix U ∈ U(n,C) such that w+(k∗) = v+(k∗)U .

Therefore,

w(k∗) = v(k∗)

(
U 0

0 U

)
.

Note that det

(
U 0

0 U

)
= 1. Thus, detw(k∗) = det v(k∗).

Now we move on to the 2D case. Our aim is to define an index for bundles with even PHS over

T = S1×S1. The idea is to look at the cut torus Ṫ as in [2]. Let E be a bundle with even PHS.

It induces a bundle Ė = Ė+⊕ Ė− on Ṫ. By Proposition 3.1.9, there is a frame v+ : Ṫ→ F (Ė+)

from which we obtain v−(k) := Σv+(τk), a frame of Ė−. By setting v(k) = (v+(k), v−(k))

we obtain a frame v : Ṫ → F (Ė) satisfying Eq. (5). Let v±(π, k2) = v±(−π, k2)T±(k2) and

v(π, k2) = v(−π, k2)T (k2). Note that

T (k2) =

(
T+(k2) 0

0 T−(k2)

)
.

Proposition 3.5.8.

T−(k2) = (T+(−k2))−1

Proof. We have v+(π, k2) = v+(−π, k2)T+(k2). Applying Σ gives v−(−π,−k2) = Σv+(π, k2) =

Σ(v+(−π, k2)T+(k2)) = (Σv+(−π, k2))T+(k2) = v−(π,−k2)T+(k2). Thus,

v−(π,−k2) = v−(−π,−k2)(T+(k2))−1 = v−(−π,−k2)T−(−k2).

Hence, T−(−k2) = (T+(k2))−1.

Remark 3.5.9. We may always assume the frames to be unitary. For unitary frames, Propo-

sition 3.5.8 simplifies to T−(k2) = T+(−k2)T .

Definition 3.5.10. Define the index of E as I2
D(E) := W(det(T−)).
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Remark 3.5.11. Note that for the index I2
A for symmetry A we have

I2
D(E) = I2

A(E).

In particular, I2
D is well defined, i.e. independent of the frame v+.

Lemma 3.5.12. There is a unitary frame v : Ṫ→ F (Ė) satisfying

v(τk) = Σv(k)

(
0 In
In 0

)
,

and v(−π, k∗2) = v(π, k∗2) for k∗2 ∈ {0, π}.

Proof. Let v : Ṫ→ F (Ė) be a unitary frame with

v(τk) = Σv(k)

(
0 In
In 0

)
.

Then

v(−π, 0) = (v+(−π, 0), v−(−π, 0)),

v(−π, π) = (v+(−π, π), v−(−π, π)).

Note that v−(−π, 0) and Σv+(−π, 0) both lie in F (E−(−π,0)). So there is a G(0) ∈ GL(n)

such that v−(−π, 0)G(0) = Σv+(−π, 0). Analogously, there is G(−π) ∈ GL(n) such that

v−(−π,−π)G(−π) = Σv+(−π,−π). Since GL(n) is path connected, we can find a path γ :

[−π, 0]→ GL(n) connecting G(−π) and G(0). Let γ̃ : S1 → GL(n) be an extension of γ defined

through γ̃(k) = γ(−k) for k ∈ [0, π]. Then det γ̃ has winding number zero. Thus, there is a

homotopy G̃ : [−π, 0] × S1 → GL(n) such that for all k2 ∈ S1 we have G̃(−π, k2) = γ̃(k2) and

G̃(0, k2) = In. For k = (k1, k2) ∈ [−π, 0]× S1 now set

w(k) := v(k)

(
1 0

0 G̃(k1, k2)

)

Then

w(0, k2) = v(0, k2),

w(−π, 0) = (v+(−π, 0),Σv+(−π, 0)) and

w(−π, π) = (v+(−π, π),Σv+(−π, π)).

Now extend w to Ṫ through

w(k1, k2) := Σw(τk)

(
0 In
In 0

)

for k1 ∈ [0, π]. This is well defined, because w(0, k2) = v(0, k2) = Σv(0,−k2)

(
0 In
In 0

)
. More-
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over,

w(π, 0) = (w+(−π, 0),Σw+(−π, 0)) = w(−π, 0) and

w(π, π) = (w+(−π, π),Σw+(−π, π)) = w(−π, π).

So w is a frame with all the properties we wanted.

Given a bundle E with even PHS over the 2-torus T, one can obtain bundles with even PHS

over S1 by restricting the base space. Let γ1 := {0} × S1, γ2 := S1 × {π}, γ3 := {π} × S1, γ4 :=

S1 × {0}. We call γi and γi+2 parallel for i = 1, 2. For all i, the bundle Eγi has even PHS

over S1 and we can thus look at I1
D(Eγi). Note that

∏4
i=1 I1

D(Eγi) = 1, because every fixed

point τk∗ = k∗ is counted twice. Thus up to cyclic permutation, we have the following four

possibilities for (I1
D(Eγi))

4
i=1: (1, 1, 1, 1), (−1,−1,−1,−1), (1,−1, 1,−1) and (1, 1,−1,−1). In

the first three cases, the 1D-index agrees on parallel γi. In the last case, the 1D-index is different

on parallel γi.

Theorem 3.5.13. Let E be a bundle over T with even PHS. If the 1D-index I1
D(E) agrees on

parallel γi then the 2D-index I2
D(E) is even. If the 1D-index is different for parallel γi then the

2D-index is odd.

Proof. Let v be a unitary frame as in Lemma 3.5.12. On [−π, 0]× S1 define

w(k1, k2) := (v+(k1, k2), v−1 (k1, k2), ..., v−n−1(k1, k2), v−n (k1, k2) det v(k1, k2)−1 det v(0, k2)).

Then detw(k1, k2) = detw(0, k2) and w(0, k2) = v(0, k2) for all k1 ∈ [−π, 0] and k2 ∈ S1. Note

that for k∗ ∈ {0, π} we have

w(−π, k∗) = v(−π, k∗)

(
I2n−1 0

0 I1
D(E|S1×{k∗})

)
.

Extend w to Ṫ through

w(k1, k2) := Σw(τk)

(
0 In
In 0

)
for (k1, k2) ∈ [0, π] × S1. Note that w is well defined at k1 = 0 and that detw(k1, k2) =

detw(0, k2) holds also for k1 ∈ [0, π]. By Proposition 3.5.8, the transition matrix T (k2) with

w(−π, k2)T (k2) = w(π, k2) is of the form

T (k2) =

(
(T−(−k2))−1 0

0 T−(k2)

)
.

Since w is unitary, detT−(k2) = eiα(k2) for some continuous α : S1 → R/2πZ. Moreover, for

all k2 ∈ S1 we have detT (k2) = 1 because detw(−π, k2) = detw(0, k2) = detw(π, k2). This

implies that 1 = detT−(k2) det(T−(−k2))−1 = eiα(k2)eiα(−k2), i.e. α(k2) ≡ −α(−k2) mod 2πZ.

Hence detT− winds by the same amount from −π to 0 as from 0 to π, i.e. W[−π,0](detT−) =
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W[0,π](detT−). For k∗ ∈ {0, π} we have

w(π, k∗) = Σw(−π, k∗)

(
0 In
In 0

)
= Σv(−π, k∗)

(
I2n−1 0

0 I1
D(E|S1×{k∗})

)(
0 In
In 0

)

= v(π, k∗)

(
0 In
In 0

)(
I2n−1 0

0 I1
D(E|S1×{k∗})

)(
0 In
In 0

)

= v(−π, k∗)

(
0 In
In 0

)(
I2n−1 0

0 I1
D(E|S1×{k∗})

)(
0 In
In 0

)

= w(−π, k∗)

(
I2n−1 0

0 I1
D(E|S1×{k∗})

)(
0 In
In 0

)(
I2n−1 0

0 I1
D(E|S1×{k∗})

)(
0 In
In 0

)
,

where we used that v(π, k∗) = v(−π, k∗) by assumption. Thus,

T−(k∗) =

(
In−1 0

0 I1
D(E|S1×{k∗})

)
.

In particular, if the 1D-index agrees on parallel γi, then detT−(0) = detT−(π). Then, the

winding number W[0,π](detT−) is an integer and thus I2
D(E) = 2W[0,π](detT−) is even. If the

1D-index differs on parallel γi, then detT−(0) = −detT−(π) and W[0,π](detT−) ≡ 1
2 mod Z.

Hence, I2
D(E) is odd in this case.

Remark 3.5.14. Theorem 3.5.13 describes the relation of the Z2-index in 1D and the Z-index

in 2D for symmetry D. In [12] this relation is viewed from a different perspective. For any

symmetry, any Z2-index in dimension d can be defined from the Z- or the Z2-index Id+1 in

dimension d + 1 through so-called dimensional reduction. The idea is as follows: Given d-

dimensional vector bundles E1, E2 in a certain symmetry class, it is possible to construct a

(d + 1)-dimensional bundle Ẽ(E1, E2) in the same symmetry class, which agrees with E1 over

{0} × Td and is equal to E2 over {π} × Td. The resulting (d + 1)-dimensional bundle Ẽ is not

unique, but the parity of Id+1(Ẽ) is. Let E0 denote a trivial d-dimensional vector bundle in

the symmetry class, e.g. a vector bundle corresponding to constant Fermi projections. One can

define Id(E1) := Id+1(Ẽ(E1, E0)) mod 2.

In this context, Theorem 3.5.13 shows that I1
D is precisely the index one can obtain from I2

D

through dimensional reduction. Remarks 3.5.7 and 3.4.6 provide examples for this relationship

between 0D- and 1D-indices.

3.6 DIII

Definition 3.6.1. Let H = {H(k) : k ∈ Td} be a continuous family of self-adjoint operators on

CN with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H belongs to symmetry class

DIII if there are operators Θ,Σ : CN → CN such that

(i) Θ,Σ are antiunitary,

(ii) Θ2 = −1 and Σ2 = 1,
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(iii) for all k ∈ T,

H(τk)Σ = −ΣH(k) and H(τk)Θ = ΘH(k),

(iv) ΘΣ = ΣΘ = Π.

Note that Π is unitary, Π2 = −1 and H(k)Π = −ΠH(k).

Remark 3.6.2. Let H be in symmetry class DIII. Let P denote the Fermi projection. Then

Ĥ(k) := 2P (k) − 1 is self-adjoint, unitary and squares to 1 and belongs to the class DIII.

Moreover, any self-adjoint, unitary matrix K with K2 = 1 can be written as K = 2P − 1 for

some projection P .

Remark 3.6.3. Let H be in class DIII. Then H is equivalent to the corresponding Ĥ.

Proof. Note that the homotopy F constructed in the proof of Remark 3.1.3 satisfies F (τk, t)Π =

−ΠF (k, t).

Definition 3.6.4. A bundle in class DIII is a vector bundle of the form E = E+⊕E− = Td×CN

with antilinear maps Σ,Θ : CN → CN such that

(i) the fibres E+(k) and E−(k) are orthogonal subspaces of CN for every k ∈ Td,

(ii) Σ2 = 1 and Θ2 = −1 and Π := ΣΘ = ΘΣ,

(iii) the orthogonal projections P±(k) onto E±(k) satisfy P−(τk)Σ = ΣP+(k) and P+(τk)Θ =

ΘP+(k).

Note that Π is unitary, Π2 = −1 and P−(k)Π = ΠP+(k).

Remark 3.6.5. Let H be in class DIII. Let P−(k) be the Fermi projection and P+(k) the

projection associated to σ(H) ∩ (0,∞). Let E±(k) = {(k, P±(k)(CN ))}. Then we obtain a

bundle in class DIII. Conversely, from a bundle in class DIII, we can define H(k) := 2P+(k)− 1

which is a continuous family of self-adjoint operators in class DIII.

Remark 3.6.6. Let H be in symmetry class DIII. By Proposition 3.2.2 we can choose a basis

such that Π = iIn ⊕ −iIn, hence N = 2n. Since ΘΠ = ΠΘ, if Πv = iv, then ΠΘv = ΘΠv =

Θiv = −iΘv. Thus from a basis B = (b1, ..., bn) of the eigenspace EΠ,i, we obtain a basis

(−Θb1, ...,−Θbn) of EΠ,−i. In this basis, we have Θ = UC for the complex conjugation C and

U =

(
0 In
−In 0

)
.

Moreover, {Π, Ĥ(k)} = 0 implies

Ĥ(k) =

(
0 h(k)∗

h(k) 0

)
, (6)

for some continuous h : Td → U(n). The condition ΘĤ(k) = Ĥ(τk)Θ gives

h(τk) = −h(k)T . (7)
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Note that for given symmetries Θ,Σ,Π we can choose a basis such that the family H belongs

to class DIII if and only if Ĥ satisfies Eq. (6) and (7).

We want to classify the continuous families H satisfying Eq. (6) and (7) in dimensions 0, 1,

and 2. In 0D, the condition in Eq. (7) is equivalent to h being antisymmetric. Since h has to

be invertible, it must have even rank n = 2m. First, we need the following result.

Proposition 3.6.7. The set of antisymmetric matrices in U(2m) is path-connected.

Proof. Let ε be the matrix with m blocks of the form

(
0 1

−1 0

)
on the diagonal. Let A1, A2 be

two antisymmetric matrices in U(2m). Then there exist Q1, Q2 ∈ U(2m) such that Ai = QiεQ
T
i

for i = 1, 2 [15]. Since U(2m) is path-connected we can also choose a path Q(t) from Q1 to Q2 in

U(2m). Then A(t) = Q(t)εQ(t)T is a path form A1 to A2 in the set of antisymmetric matrices

in U(2m).

Thus, the 0D-index for DIII vanishes. In 1D we want to define an index for bundles in class

DIII.

Proposition 3.6.8. Let E = E+⊕E− be a bundle in class DIII in 1D. Note that rank(E) = 4m.

Then, there exists a unitary frame v+ : S1 → F (E+) satisfying

Θv+(k)

(
0 Im
−Im 0

)
= v+(τk). (8)

Proof. First, we show that we can pick such a frame at the fixed points k∗ ∈ {0, π}. Let

v ∈ F (E+
k∗). Then, also Θv ∈ F (E+

k∗) and the vectors v and Θv are orthogonal because Θ2 = −1.

Therefore, we can inductively choose unitary frames of E+
k∗ of the form

(v1(k∗), ..., vm(k∗),Θv1(k∗), ...,Θvm(k∗)).

Now we can interpolate with a section v+ : [0, π] → F (E+) between v+(0) and v+(π). Then

define v+ on [−π, 0] by Eq. (8). For details see the proof of Proposition 3.3.8.

Let E = E+⊕E− be a bundle in class DIII. We may pick a basis such that Π = iI2m⊕−iI2m.

Then H(k) := 2P+(k)− 1 has the form H(k) =

(
0 h(k)∗

h(k) 0

)
for h(k) : Td → U(2m). Thus,

any (local) frame v+ of E+ is of the form

v+(k) =
1√
2

(
w(k)

h(k)w(k)

)
,

for some continuous w(k) ∈ U(2m).

In the case d = 1, pick a global frame as in Proposition 3.6.8. The corresponding w : S1 →
U(2m) then satisfies

h(τk)w(τk) = −w(k)

(
0 Im
−Im 0

)
. (9)

We define the 1D-index as follows.
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Definition 3.6.9. Let E = E+ ⊕ E− be a 1D-bundle in class DIII. Pick a basis B such that

Π = iI2m ⊕ −iI2m and choose a global frame v+ of E+ as in Proposition 3.6.8. We then have

v+(k) = 1√
2

(
w(k)

ŵ(k)

)
, where w(k) : S1 → U(2m). Define the index as

I1
DIII(E) := W(detw) mod 2.

Proposition 3.6.10. The index I1
DIII is well defined, i.e. independent of the choice of B and

v+.

Proof. Let E = E+⊕E− be a 1D bundle in class DIII. A different choice of the basis B amounts

to a change of basis by M =

(
A 0

0 Ã

)
∈ U(2m) ⊕ U(2m), because Π has to stay the same. In

the new basis, then w(k) = A−1wold(k)A, thus leaving W(detw) unchanged. The index is also

independent of the choice of v+: Suppose v+(k) = 1√
2

(
w(k)

ŵ(k)

)
and ṽ+(k) = 1√

2

(
z(k)

ẑ(k)

)
are

two unitary frames of E+ as in Proposition 3.6.8. Then there is G : S1 → U(2m) such that

w(k)G(k) = z(k). Then by Eq. (9), we have

−w(k)

(
0 Im
−Im 0

)
G(τk) = h(τk)w(τk)G(τk) = h(τk)z(τk)

= −z(k)

(
0 Im
−Im 0

)
= −w(k)G(k)

(
0 Im
−Im 0

)
.

Thus (
0 Im
−Im 0

)
G(τk) = G(k)

(
0 Im
−Im 0

)
.

At the fixed points G is symplectic, so W[0,π](detG) ∈ Z. Moreover, detG(τk) = detG(k).

Thus, W(detG) = 2W[0,π](detG) ∈ 2Z and W(det z) = W(detw) + W(detG) ≡ W(detw)

mod 2. Therefore, the index is well defined.

In [12] a 1D-index for DIII is defined directly for the continuous familyH. It can be calculated

as follows. Let h : S1 → U(2m) be a block corresponding to H. The symmetry condition in

Eq. (7) implies that h is antisymmetric at the fixed points, so the Pfaffian Pf(h(k∗)) is well-

defined. Choose a continuous path α : [0, π]→ C \ {0} such that α(k)2 = det(h(k)). Then, the

index is given by (−1)Î(H) = Pf(h(π))
α(π)

α(0)
Pf(h(0)) .

Remark 3.6.11. Let H be a family in DIII and let h : S1 → U(2m) be a corresponding block.

Then H is equivalent to a H̃ which admits a block h̃ : S1 → U(2m) with det h̃(k) = 1.

Proof. Let α : [0, π] → C \ {0} be continuous and such that α(k)2m = det(h(k))−1. Let f(k, t)

be a homotopy between the constant map 1 and α(k). Then

F (k, t) =

{
h(k)f(k, t) for k ∈ [0, π]

h(k)f(τk, t) for k ∈ [π, 2π]
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defines a homotopy respecting the symmetry condition in Eq. (7) and h̃ := F (·, 1) has the desired

properties.

Proposition 3.6.12. The indices I1
DIII and Î agree.

Proof. Let H be a family in DIII and let h : S1 → U(2m) be a corresponding block. By

Remark 3.6.11 it suffices to show that the two indices agree if deth(k) = 1. In this case we have

(−1)Î(H) = Pf(h(π))
Pf(h(0)) , which indeed takes values in {±1} since Pf(h(k))2 = deth(k) = 1. On the

other hand, Eq. (9) implies detw(τk) = detw(k). So W(detw) = 2W[0,π](detw), i.e. W(detw)

is even or odd iff detw(π)
detw(0) = 1 or −1 respectively. This means that (−1)W(detw) = detw(π)

detw(0) .

Moreover, Eq. (9) also implies

h(τk) = −w(k)

(
0 Im
−Im 0

)
w(τk)

T
.

Using that Pf(BABT ) = det(B)Pf(A) we obtain Pf(h(τk)) = det(w(k))Pf

(
0 Im
−Im 0

)
. Thus,

detw(π)
detw(0) = Pf(h(π))

Pf(h(0)) , and we have (−1)I
1
DIII(H) = (−1)W(detw) = Pf(h(π))

Pf(h(0)) = (−1)Î(H). Therefore,

the two Z2-indices agree.

Now we consider the situation in 2D for DIII.

Definition 3.6.13. Let E = E+ ⊕ E− be a 2D-bundle in class DIII. In particular, E has time

reversal symmetry. So we can define

I2
DIII(E) := I2

AII(E),

where I2
AII is defined in Section 3.7.

Proposition 3.6.14. Let E = E+⊕E− be a 2D-bundle in class DIII. There is a unitary frame

v : Ṫ→ F (Ė+) satisfying

θv(k)

(
0 −Im
Im 0

)
= v(τk)

and v(−π, k∗) = v(π, k∗) for k∗ ∈ {0, π}.

Proof. Let rank(E) = 4m. Pick sections v : {0}×S1 → F (Ė+) and w : {π}×S1 → F (Ė+) as in

Proposition 3.6.8. We may extend the v to a section v : [0, π]×S1 → F (Ė+). Then for k∗2 ∈ {0, π}
there are G(k∗2) ∈ U(2m) such that v(π, k∗2)G(k∗2) = w(π, k∗2). Let G : [0, π]→ U(2m) be a path

connecting G(0) and G(π) and for k ∈ [−π, 0] let G(k) = G(−k). Then W(detG) = 0 and

thus there is a homotopy G̃ : [0, π]× S1 → U(2m) between I2m and G. Now for k ∈ [0, π]× S1

set ṽ(k) = v(k)G(k). Then ṽ(π, k∗2) = w(π, k∗2) and ṽ(0, ·) = v(0, ·). Now extend ṽ to Ṫ

through ṽ(τk) = θṽ(k)

(
0 −Im
Im 0

)
. Then ṽ(−π, k∗2) = ṽ(π, k∗2), so ṽ is a frame of the form we

wanted.

Theorem 3.6.15. Let E = E+ ⊕ E− be a 2D-bundle in class DIII. Then

I2
DIII(E) = I1

DIII(E|γ2) + I1
DIII(E|γ4) mod 2.
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γ2
(−π, π) (π, π)

γ2
(−π,−π) (π,−π)

γ4
(−π, 0) (π, 0)

C1

C

C2

C2

Figure 1: The curves C, C1 and C2 on the cut torus Ṫ = [−π, π]× S1 with (−π, k∗) and (π, k∗)
identified for k∗ ∈ {0, π}.

So the 2D-index is trivial iff the 1D-indices on parallel γi agree.

Proof. Let rank(E) = 4m and let v be a frame of E+ as in Proposition 3.6.14. Let T :

S1 → U(2m) be given by v(−π, k2)T (k2) = v(π, k2). Then T (0) = T (π) = I2m and by

Remark 3.7.6, the 2D-index is I2
DIII(E) = I2

AII(E) = W[0,π](detT ) mod 2. We can write

v(k) = 1√
2

(
w(k)

ŵ(k)

)
, for w(k) ∈ U(2m). Note that w(−π, k2)T (k2) = w(π, k2) and thus

detT (k2) = detw(π, k2) detw(−π, k2)−1. Hence,

I2
DIII(E) = W[0,π](det(w(π, ·)))−W[0,π](det(w(−π, ·))) mod 2.

We can view w as being defined on the cut torus Ṫ with the points (−π, k∗) and (π, k∗) identified

for k∗ ∈ {0, π}.
Consider the curve C as in Figure 1. Let WC be the winding number of detw along C. By

shrinking the curve C to the curve C1 depicted in Figure 1, we see that

WC = W[0,π](det(w(π, ·)))−W[0,π](det(w(−π, ·))).

In particular, I2
DIII(E) ≡ WC mod 2. By enlarging the curve C to C2 as in Figure 1, we note

that

WC = W(detw|γ2)−W(detw|γ4).

Hence, WC ≡ I1
DIII(E|γ2)− I1

DIII(E|γ4) mod 2. So we have

I2
DIII(E) ≡WC mod 2 ≡ I1

DIII(E|γ2) + I1
DIII(E|γ4) mod 2,

which proves the Theorem.
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3.7 AII

This symmetry class is treated in [2]. Here we only mention the definitions and properties

relevant to symmetry DIII.

Definition 3.7.1 (Cf. Definition 2.4. in [2]). Let H(k) for k ∈ Td be a continuous family of

self-adjoint operators on CN with spectral gap µ /∈ σ(H(k)) for all k ∈ Td. We say that H has

odd time-reversal symmetry if there is an operator Θ : CN → CN such that

(i) Θ is antiunitary,

(ii) Θ2 = −1,

(iii) for all k ∈ T,

ΘH(k) = H(τk)Θ.

Definition 3.7.2 (Cf. Section 4.3. in [2]). A bundle with odd time-reversal symmetry is a vector

bundle of the form E = E+ ⊕ E− = Td × CN with an antilinear map Θ : CN → CN such that

(i) the fibres E+(k) and E−(k) are orthogonal subspaces of CN for every k ∈ Td

(ii) Θ2 = −1

(iii) the orthogonal projections P±(k) onto E±(k) satisfy P±(τk)Θ = ΘP±(k)

Lemma 3.7.3 (Lemma 4.5 in [2]). Let E be a bundle in class AII in 2D. Let ε be the matrix

with blocks

(
0 1

−1 0

)
on the diagonal. There are unitary frames v± : Ṫ→ F (E±) satisfying

v±(τk) = Θv±(k)ε.

Let n = rank(E+) and let T : S1 → U(n) be the transition matrix determined by v+(π, k2) =

v+(−π, k2)T (k2). The Z2-index I defined in [2] for bundles in class AII only depends on the

winding of the eigenvalues of T , see Eq. (16) and (25) in [2].

Remark 3.7.4. By reordering the basis vectors we can obtain unitary frames v± : Ṫ→ F (Ė±)

satisfying

v±(τk) = Θv±(k)

(
0 Im±

−Im± 0

)
,

where 2m± = rank(E±). This leads to a slightly different transition function TD = PTP−1,

where P is the permutation matrix with columns (e1, em++1, e2, em++2, ..., em+ , e2m+), where ei

denotes the i-th standard basis vector of C2m+
. Since TD and T are conjugate, they have the

same eigenvalues and thus I(TD) = I(T ) = I(E).

Definition 3.7.5. Let (−1)I
2
AII(E) := I(E).

Remark 3.7.6. From the definitions in [2] it follows that if T (0) = T (π), then

I2
AII(E) = W[0,π](detT ) mod 2 = W[0,π](detTD) mod 2.
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3.8 CII

Definition 3.8.1. Let H = {H(k) : k ∈ Td} be a continuous family of self-adjoint operators on

CN with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H belongs to symmetry class CII

if there are operators Θ,Σ : CN → CN such that

(i) Θ,Σ are antiunitary,

(ii) Θ2 = Σ2 = −1,

(iii) for all k ∈ T,

H(τk)Σ = −ΣH(k) and H(τk)Θ = ΘH(k),

(iv) ΘΣ = ΣΘ = Π.

Note that Π is unitary, squares to the identity and H(k)Π = −ΠH(k).

Remark 3.8.2. Let H be in symmetry class CII. Let P denote the Fermi projection. Then

Ĥ(k) := 2P (k)−1 is self-adjoint, unitary and squares to 1 and belongs to the class CII. Moreover,

any self-adjoint, unitary matrix K with K2 = 1 can be written as K = 2P−1 for some projection

P .

Remark 3.8.3. Let H be in class CII. Then H is equivalent to the corresponding Ĥ.

Proof. Note that the homotopy F constructed in the proof of Remark 3.1.3 satisfies F (τk, t)Σ =

−ΣF (k, t) and F (τk, t)Θ = ΘF (k, t).

Remark 3.8.4. Let H be in symmetry class CII, let Ĥ be as in Remark 3.8.2. By Proposi-

tion 3.2.2 we can choose a basis such that Π = In⊕−In, hence N = 2n. Since ΣΠ = ΠΣ, if Πv =

v, then also ΠΣv = ΣΠv = Σv. Because Σ2 = −1, the vectors v and Σv are orthogonal. Thus

one can choose a orthonormal basis of the eigenspace EΠ,1 of the form (v1, ..., vm,Σv1, ....,Σvm)

and similarly for EΠ,−1 we can choose a basis (w1, ..., wm,−Σw1, ...,−Σwm). Thus N = 4m and

in this basis, we have Σ = SC for the complex conjugation C and

S =


0 −Im 0 0

Im 0 0 0

0 0 0 Im
0 0 −Im 0

 .

Moreover, {Π, Ĥ(k)} = 0 and Ĥ(k)2 = 1 implies

Ĥ(k) =

(
0 h(k)∗

h(k) 0

)
, (10)

for some continuous h : Td → U(2m). The condition ΣĤ(k) = −Ĥ(τk)Σ gives

h(τk)

(
0 Im
−Im 0

)
=

(
0 Im
−Im 0

)
h(k). (11)
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Note that for given symmetries Θ,Σ,Π we can choose a basis such that the family H belongs

to class CII if and only if Ĥ satisfies Eq. (10) and (11) in some basis.

We want to classify the continuous families H satisfying Eq. (10) and (11) in dimensions 0,

1, and 2. In 0D, the condition in Eq. (11) is equivalent to hT being symplectic, i.e.

h

(
0 Im
−Im 0

)
hT =

(
0 Im
−Im 0

)
.

Since the symplectic group is connected [5], the 0D-index for CII vanishes. In 1D, an index can

be defined through

Definition 3.8.5.

I1
CII(H) := W(deth).

This is very similar to the situation for class BDI. However, the index can take only even

values.

Proposition 3.8.6. For 1-dimensional H in class CII, the index I1
CII(H) is even.

Proof. At a fixed point k∗ ∈ {0, π}, h is symplectic and thus has deth(k∗) = 1. Hence,

W |[0,π](deth) is an integer. Moreover, det(h(τk)) = det(h(k)) implies that W |[−π,0](deth) =

W |[0,π](deth). Thus, I1
CII(H) := W(deth) = 2W |[0,π](deth) ∈ 2Z.

Example 3.8.7. Note that

h(k) =


eikl 0 0 0

0 Im−1 0 0

0 0 eikl 0

0 0 0 Im−1


satisfies Eq. (11) for any l ∈ Z. The family H given by Eq. (10) then has index I1

CII(H) = 2l.

Thus, the index I1
CII can attain all values in 2Z.

Proposition 3.8.8. The 2D-index for CII vanishes, explaining the entry 0 in Table 1.

Proof. Suppose H1 and H2 lie in the class CII in 2D and that the lower dimensional indices

agree, i.e. the 1D-index agrees on γi for i ∈ {1, 2, 3, 4}. There is a map G : T → U(2m) such

that G(k)h2(k) = h1(k).

Eq. (11) implies that W |[−π,0](deth1|γi) = W |[0,π](deth1|γi). Thus,

2W |[0,π](deth1|γi) = I1
CII(h1|γi) = I1

CII(h2|γi) = 2W |[0,π](deth2|γi),

and we conclude that W[−π,0](detG|γi) = W[0,π](detG|γi) = 0.

Thus, G satisfies the assumptions of Proposition 2.3.3 with X = U(2m), I = I2m and

f(A) =

(
0 Im
−Im 0

)
A

(
0 −Im
Im 0

)
.
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Therefore, we obtain a homotopy F1, which by the symplectic condition at fixed points k∗ has

detF1(k∗, t) = 1. Hence, for the winding number we have

W[−π,0](detF1(·, t)|γi) = W[0,π](detF1(·, t)|γi) = W[0,π](detG|γi) = 0

for every t. Thus, G̃ = F1(·, 1) satisfies the assumption of part (ii) of Proposition 2.3.3 and since

π2(U(2m,C)) = 0, we obtain a homotopy F2 between G and In satisfying F2(τk, t) = f(F2(k, t)).

Then, we can define h(k, t) := F (k, t)h2(k), which defines a homotopy between h1 and h2

satisfying h(τk, t) = f(h(k, t)). Thus, H1 can be deformed into H2 while keeping the symmetry

and the spectral gap intact. Hence, the 2D-index for CII vanishes.

3.9 C

Definition 3.9.1. Let H(k) for k ∈ Td be a continuous family of self-adjoint operators on CN

with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H has odd particle-hole symmetry if

there is an operator Σ : CN → CN such that

(i) Σ is antiunitary,

(ii) Σ2 = −1,

(iii) for all k ∈ T,

ΣH(k) = −H(τk)Σ.

Remark 3.9.2. The treatment of symmetry C is very similar to symmetry D. The definitions

and proofs work analogously. For proofs that are identical in case C and D we will refer to

symmetry D.

Let P−(k) be the Fermi projection and P+(k) the projection associated to σ(H) ∩ (0,∞).

Let E±(k) = {(k, P±(k)(CN ))}.

Proposition 3.9.3. The projections satisfy P−(τk)Σ = ΣP+(k).

Proof. Identical to the proof of Proposition 3.5.2.

Thus a family of Hamiltonians with odd PHS induces a bundle satisfying the following

definition.

Definition 3.9.4. A bundle with odd particle hole symmetry is a vector bundle of the form

E = E+ ⊕ E− = Td × CN with an antilinear map Σ : CN → CN such that

(i) the fibres E+(k) and E−(k) are orthogonal subspaces of CN for every k ∈ Td,

(ii) Σ2 = −1,

(iii) the orthogonal projections P±(k) onto E±(k) satisfy P−(τk)Σ = ΣP+(k).

Remark 3.9.5. Because Σ2 = −1 is bijective, Σ defines a bijection between E+(k) and E−(τk).

Thus rank(E+) = dimE+(k) = dimE−(τk) = rank(E−). So rank(E) = N =: 2n is even.
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Remark 3.9.6. We can write Σ = SC for a unitary S and a complex conjugation C. Moreover,

we may assume that

S =

(
0 −In
In 0

)
.

Proof. The condition Σ2 = −1 implies that S is antisymmetric. Let ε be the matrix with n blocks

of the form

(
0 1

−1 0

)
on the diagonal. Then there exists Q ∈ U(2n) such that QSQT = ε [15].

Let P be the matrix P = i(e1, en+1, e2, en+2, ..., en, e2n), where ej denotes the j-th standard

basis vector. Then,

PεP T =

(
0 −In
In 0

)
.

Thus, changing basis by PQ brings the matrix S into the desired form.

From now on we will assume that S =

(
0 −In
In 0

)
.

Remark 3.9.7. If we take a bundle with odd PHS, then Ĥ(k) := 2P+(k) − 1 is unitary,

self-adjoint and satisfies Ĥ(τk)Σ = −ΣĤ(k), i.e. it has all the properties that the original

Hamiltonian had.

Our aim is to define an index for bundles with odd PHS over T = S1×S1. The idea is to look

at the cut torus Ṫ as in [2]. Let E be a bundle with odd PHS. It induces a bundle Ė = Ė+⊕ Ė−

on Ṫ, which by Proposition 3.1.9 admits a frame v+ : Ṫ→ F (Ė+). Then we define a frame v−

of Ė− through v−(k) := Σv+(τk). By setting v(k) = (v+(k), v−(k)) we obtain frame v of Ė

satisfying

v(τk) = Σv(k)

(
0 In
−In 0

)
.

Let v±(π, k2) = v±(−π, k2)T±(k2) and v(π, k2) = v(−π, k2)T (k2). Note that

T (k2) =

(
T+(k2) 0

0 T−(k2)

)
.

Proposition 3.9.8.

T−(k2) = (T+(−k2))−1

Proof. Identical to the proof of Proposition 3.5.8.

Definition 3.9.9. Define the index of E as I2
C(E) := W(det(T−)).

Remark 3.9.10. Note that for the index I2
A for symmetry A we have

I2
C(E) = I2

A(E).

In particular, I2
C is well defined, i.e. independent of the frame v+.

Remark 3.9.11. We may always assume our frames to be unitary.
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Lemma 3.9.12. For a unitary frame v satisfying

v(τk) = Σv(k)

(
0 In
−In 0

)
, (12)

we have det v(k∗) = 1 for all fixed points τk∗ = k∗ where v is defined.

Proof. At all fixed points k∗ we have

v(k∗) = Σv(k∗)

(
0 In
−In 0

)
=

(
0 −In
In 0

)
v(k∗)

(
0 In
−In 0

)
.

We can rearrange this as

v(k∗)T

(
0 In
−In 0

)
v(k∗) =

(
0 In
−In 0

)
.

Thus v(k∗) is a symplectic matrix and thus has det v(k∗) = 1.

Remark 3.9.13. Let d ∈ {0, 1}. Let Λ = diag(λi), where λi : Td → R>0 for 1 ≤ i ≤ n.

If v : Td → U(2n) satisfies Eq. (12), then H = v(k)

(
Λ(k) 0

0 −Λ(τk)

)
v(k)∗ is in class C.

Conversely, any H in class C in dimension d can be written in this form.

In 0D, Eq. (12) means that the frame v is a symplectic matrix. Since the symplectic group is

connected [5], we may deform any H = v(k)

(
Λ(k) 0

0 −Λ(τk)

)
v(k)∗ in class C to

(
In 0

0 −In

)
,

while keeping the symmetry and the spectral gap intact. This justifies the entry 0 in Table 1.

Let H be in class C in 1D. We may write H(k) = v(k)

(
Λ(k) 0

0 −Λ(τk)

)
v(k)∗ for some

v : S1 → U(2n) satisfying Eq. (12). By Proposition 2.3.2 we can deform v in such a way that

v(0) = v(π) = I2n while keeping the symmetry property intact. Let l = W[0,π](det v). For

k ∈ [0, π] let ṽ(k) = v(k)

(
e−ikl 0

0 I2n−1

)
and extend ṽ to S1 such that it satisfies Eq. (12).

We may replace v by ṽ without changing H. By Proposition 2.3.2 (ii) we may deform ṽ to I2n

while keeping the symmetry property intact. So H can be again deformed to

(
In 0

0 −In

)
while

keeping the symmetry and the spectral gap intact, justifying the entry 0 in Table 1.

Now we want to show that the index I2
C can only take even values.

Lemma 3.9.14. There is a unitary frame v : Ṫ → F (Ė) satisfying Eq. (12) and v(−π, k∗2) =

v(π, k∗2) for k∗2 ∈ {0, π}.

Proof. Identical to the proof of Lemma 3.5.12 up to replacing all

(
0 In
In 0

)
with

(
0 In
−In 0

)
.

Theorem 3.9.15. In 2D, for any bundle E with odd PHS the index I2
C(E) is even.
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Proof. Let v be a frame as in Lemma 3.9.14. On [−π, 0]× S1 define

w(k1, k2) := (v+(k1, k2), v−1 (k1, k2), ..., v−n−1(k1, k2), v−n (k1, k2) det v(k1, k2)−1 det v(0, k2)).

Then detw(k1, k2) = detw(0, k2) and w(0, k2) = v(0, k2) for all k1 ∈ [−π, 0] and k2 ∈ S1. Note

that w(−π, 0) = v(−π, 0) and w(−π, π) = v(−π, π) by Lemma 3.9.12. Extend w to Ṫ through

w(k1, k2) := Σw(τk)

(
0 In
−In 0

)

for (k1, k2) ∈ [0, π] × S1. Note that w is well defined at k1 = 0 and that w is again a unitary

frame of the form as in Lemma 3.9.14. By Proposition 3.9.8, the transition matrix T (k2) with

w(−π, k2)T (k2) = w(π, k2) is of the form

T (k2) =

(
(T−(−k2))−1 0

0 T−(k2)

)
.

Since w is unitary, detT−(k2) = eiα(k2) for some continuous α : S1 → R/2πZ. Moreover, for

all k2 ∈ S1 we have detT (k2) = 1 because detw(−π, k2) = detw(0, k2) = detw(π, k2). This

implies that 1 = detT−(k2) det(T−(−k2))−1 = eiα(k2)eiα(−k2), i.e. α(k2) ≡ −α(−k2) mod 2πZ.

Hence detT− winds by the same amount from −π to 0 as from 0 to π, i.e. W[−π,0](detT−) =

W[0,π](detT−). We have w(−π, 0) = w(π, 0) and w(−π, π) = w(π, π). Thus, T−(0) = T−(π) =

In and W[0,π](detT−) is an integer. So I2
C(E) = 2W[0,π](detT−) is even.

3.10 CI

Definition 3.10.1. Let H = {H(k) : k ∈ Td} be a continuous family of self-adjoint operators

on CN with spectral gap 0 /∈ σ(H(k)) for all k ∈ Td. We say that H belongs to symmetry class

CI if there are operators Θ,Σ : CN → CN such that

(i) Θ,Σ are antiunitary,

(ii) Θ2 = 1 and Σ2 = −1,

(iii) for all k ∈ T,

H(τk)Σ = −ΣH(k) and H(τk)Θ = ΘH(k),

(iv) ΘΣ = ΣΘ = Π.

Note that Π is unitary, Π2 = −1 and H(k)Π = −ΠH(k).

Remark 3.10.2. Let H be in symmetry class CI. By Proposition 3.2.2 we can choose a basis

such that Π = iIn ⊕ −iIn, hence N = 2n. Since ΣΠ = ΠΣ, if Πv = iv, then ΠΣv = ΣΠv =

Σiv = −iΣv. Thus from a basis B = (b1, ..., bn) of the eigenspace EΠ,i, be obtain a basis

(−Σb1, ...,−Σbn) of EΠ,−i. In this basis, we have Σ = SC for the complex conjugation C and

S =

(
0 In
−In 0

)
.
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Moreover, {Π, H(k)} = 0 implies

H(k) =

(
0 h(k)∗

h(k) 0

)
, (13)

for some continuous h : Td → GL(n). The condition ΣH(k) = −H(τk)Σ gives

h(τk) = h(k)T . (14)

Note that for given symmetries Θ,Σ,Π we can choose a basis such that the family H belongs

to class CI if and only if H satisfies Eq. (13) and (14).

We want to classify the continuous families H satisfying Eq. (13) and (14) in dimensions 0,

1, and 2. First we need the following result.

Proposition 3.10.3. The set of symmetric matrices in GL(n,C) is path-connected.

Proof. Let A1, A2 be two symmetric matrices in GL(n,C). By Autonne-Takagi factorisation, we

can write A1 = Q1Λ1Q
T
1 and A2 = Q2Λ2Q

T
2 for diagonal matrices Λ1,Λ2 and Q1, Q2 ∈ U(n). For

every 1 ≤ i ≤ n choose a path αi from (Λ1)ii to (Λ2)ii in C \ {0}. Since U(n) is path-connected

we can also choose a path Q(t) from Q1 to Q2 in U(n). Then A(t) = Q(t)diag(αi(t))Q(t)T is a

path form A1 to A2 in the set of symmetric matrices in GL(n,C).

In 0D, the condition in Eq. (14) is equivalent to h being symmetric. By Proposition 3.10.3

thus the 0D-index for CI vanishes. Also in 1D we want to show that the index for CI vanishes.

Proposition 3.10.4. Let H be a one dimensional family in class CI and let h : S1 → GL(n)

be the corresponding block. Then there is a homotopy F : S1 × [0, 1]→ GL(n) between h and In
satisfying F (τk, t) = F (k, t)T .

Proof. By Proposition 2.3.2 we may assume that h(k∗) = In for k∗ ∈ {0, π}. Let l = W[0,π](deth),

then there is a homotopy F : [0, π] × [0, 1/2] → GL(n) between h|[0,π] and

(
eikl 0

0 In−1

)
rel-

ative to the endpoints. Extending F to S1 via F (τk, t) = F (k, t)T , we see that F (k, 1/2) =(
ei|k|l 0

0 In−1

)
for k ∈ [−π, π]. For t ∈ [1/2, 1] let

F (k, t) =

(
e2(1−t)i|k|l 0

0 In−1

)
.

Then F is a homotopy of the required form.

Proposition 3.10.5. The 2D-index for class CI vanishes, justifying the entry 0 in Table 1.

Proof. Suppose H lies in the class CI. Let F : S1 × [0, π]× {0} ∪ (γ2 ∪ γ4)× [0, 1]→ GL(n) be

given through F (k1, k2, 0) = h(k1, k2), F |γ2×[0,1](k, t) = h|γ2(k) and let F (k1, 0, t) be a homotopy

between h|γ4 and In as in Proposition 3.10.4. Since the domain of F is a retract of S1 × [0, π]×
[0, 1], we can extend F to S1 × [0, π]× [0, 1] and via F (τk, t) = F (k, t)T also to T× [0, 1]. Thus
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we may assume, that h|γ4 = In. Now let f1 : S1 × [0, 1] → GL(n) be a homotopy between

h|γ1 and In as in Proposition 3.10.4. Note that we can choose f1(0, t) = In by inspecting the

proof of Proposition 3.10.4. Similarly, let f3 : S1 × [0, 1]→ GL(n) be a homotopy between h|γ3
and In as in Proposition 3.10.4 with f3(0, t) = In. We can find a homotopy F3 : [0, π] × S1 ×
[0, 1]→ GL(n) such that F3(k1, k2, 0) = h(k1, k2), F3(0, k2, t) = f1(k2, t), F3(π, k2, t) = f3(k2, t)

and F3(k1, 0, t) = In. Note that F3(·, 1) is constantly equal to In on γ1 ∪ γ3 ∪ γ4|[0,π]. Since

π2(GL(n)) = 0, there is a homotopy F4 between F3(·, 1) and In. Extending both F3 and F4 to

the torus via Eq. (14), we see that we can deform h to In while keeping the symmetry property

intact. Thus the 2D-index for CI vanishes. For details see the proof of Proposition 2.3.3 (ii).

4 Mathematical examples

The aim of this Section is to show that the 2D-indices defined in Section 3 for symmetry classes

A, D, DIII and C indeed are non-trivial. We construct examples with non-vanishing indices.

4.1 Examples for class A

We want to find a continuous family H : T → CN×N of self-adjoint matrices with spectral gap

at µ ∈ R, for which I2
A(H) 6= 0. If H : T→ CN×N belongs to class A and either rank(E+) = 0

or rank(E−) = 0, then I2
A(H) = 0. Thus for N = 1 the index I2

A is always trivial. Let us

consider N = 2. We can express a family H2 : T→ C2×2 of self-adjoint matrices through

H2(k) = h0(k)I2 + ~h(k) · ~σ,

for h0 : T→ R, ~h : T→ R3 and ~h(k) ·~σ =
∑3

i=1 hi(k)σi for the Pauli matrices σi. A calculation

shows that the eigenvalues of H2(k) are

λ±(k) = h0(k)±
∥∥∥~h(k)

∥∥∥ .
Let us choose h0(k) = µ, then the gap condition is satisfied if and only if

∥∥∥~h(k)
∥∥∥ 6= 0. In that

case one can define e(k) := −
~h(k)

‖~h(k)‖ , which gives a continuous map e : T → S2. In Section 8.4.

of [13] it is shown that

I2
A(H2) = deg(e),

where deg(e) is the degree of the map e. The quotient T/(γ2 ∪ γ3) is homeomorphic to S2,

inducing a map q : T → S2 with deg(q) = 1. For every l ∈ Z pick a map fl : S2 → S2 with

deg(fl) = l. Then choosing ~h = −fl ◦ q, the corresponding H2 has index I2
A(H2) = l. Hence,

every value in Z can be attained by this index. We can extend this example to N > 2, by

considering the direct sum H = H2 ⊕ IN−2, which has index I2
A(H) = I2

A(H2).

A physical model belonging to class A in 2D is the Haldane model [3]. This model has been

realised experimentally [6].
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4.2 Examples for class D

Let N be a positive even integer. We want to show that for every l ∈ Z there is a H : T →
GL(N) in class D with I2

D(H) = l. Then also the 1D-index I1
D can take non-trivial values by

Theorem 3.5.13.

For n ∈ Z>0 let Hn(k) =

(
In 0

0 −In

)
be a trivial family in class D. If H0 : T → GL(2)

belongs to class D, then also H = H0 ⊕ Hn belongs to D and I2
D(H) = I2

D(H0). Thus, it is

enough to consider the case N = 2.

For N = 2 we can suppose that Σ =

(
0 1

1 0

)
C, where C denotes the complex conjugation.

Let us choose the ansatz H(k) = ~h(k) · ~σ for ~h : Td → S2. Then H belongs to symmetry class

D if and only if

(h1, h2, h3)(τk) = (−h1,−h2, h3)(k). (15)

Therefore, h1 and h2 vanish at the fixed points of τ . For d = 1 the index is trivial if h3(0) = h3(π)

and non-trivial if h3(0) = −h3(π).

For d = 2 the parity of the index depends on the configuration of 1D-indices on γi by

Theorem 3.5.13. As discussed in Section 3.5, there are essentially four different configurations.

Since the index is given by the Chern number, it is equal to the degree of ~h up to a change

of sign. In Figure 2 we sketch maps ~h leading to a non-trivial index for every configuration in

1D. It is enough to define ~h on half of the torus, e.g. on [0, π] × S1 and to make sure that the

symmetry condition is satisfied on the boundary. Then ~h can be extended uniquely to the torus

T via the symmetry condition in Eq. (15).

4.3 Examples for class DIII

We want to find examples in 1D and 2D for which the indices I1DIII and I2DIII do not vanish.

Since the rank has to be divisible by 4, we first consider N = 4. Following the discussion in

Section 3.6 we want to find a family

H(k) =

(
0 h(k)∗

h(k) 0

)
,

where h : Td → U(2) satisfies h(τk) = −h(k)T . The symmetry operators are given by Π =

i

(
I2 0

0 −I2

)
and Θ =

(
0 I2
−I2 0

)
C.

By Remark 3.6.11 we may assume that deth(k) = 1, which means that there is a map

f : T→ S3 ⊂ R4 with components f = (a, b, c, d) such that

h(k) =

(
a(k) + id(k) b(k) + ic(k)

−b(k) + ic(k) a(k)− id(k)

)
.

The condition h(τk) = −h(k)T implies that b(τk) = b(k) and (a, c, d)(τk) = −(a, c, d)(k).

In 1D, the index will be trivial if b(0) = b(π) and nontrivial if b(0) = −b(π). Concretely, we
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Figure 2: For each of the four different configurations of 1D-indices we sketch a map ~h : T→ S2

with non-zero degree satisfying Eq. (15). We interpret the square on the left as T by identifying
opposite edges. The sketch suggests how to define ~h : T→ S2 on the unshaded part of the tours.
Then ~h can be extended uniquely to all of T by the symmetry condition in Eq. (15).
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can choose b(k) = cos(k), c(k) = sin(k) and a(k) = d(k) = 0. Then, h(k) =

(
0 eik

−e−ik 0

)
and

a frame as in Proposition 3.6.8 is given by

v+(k) =
1√
2

(
v+

1 (k),Θv+
1 (τk)

)
=

1√
2


1 0

0 −eik

0 −1

−e−ik 0

 .

We read off that w(k) =

(
1 0

0 −eik

)
and thus W(detw) = −1 ≡ 1 mod 2. Hence, the index

I1
DIII(H) ≡ 1 ∈ Z2 is non-trivial. On the other hand, if we choose b(k) = 1 and a(k) = c(k) =

d(k) = 0, then I1
DIII(H) = 0 ∈ Z2.

In order to construct an example in 2D with non-trivial index, by Theorem 3.6.15 it suffices

to find h : T→ U(2) such that h(·, π) is constant and h(·, 0) is non-trivial in 1D. Let h(·, 0) be

non-trivial in 1D. Then h(·, 0) = (a, b, c, d) : S1 → S3 defines a loop in S3. Since π1(S3) = 0,

there is a homotopy h : S1×[0, π]→ U(2) between h(·, 0) and the constant map h(0, 0) = h(·, π).

Extend h to the torus via h(τk) = −h(k)T for k ∈ [−π, 0]. Then by construction h induces a

non-trivial index I2
DIII(H) ≡ 1 ∈ Z2.

For dimensions d = 1, 2 and N = 4m > 4 we may choose h(k) =

(
A B

−B A

)
, with

A =

(
h1(k) 0

0 0m−1

)
and B =

(
h2(k) 0

0 Im−1

)
,

where h1, h2 : Td → C are such that ĥ(k) =

(
h1(k) h2(k)

−h2(k) h1(k)

)
induces a Hamiltonian H4 of

rank 4 with non-trivial index in dimension d. Then IdDIII(H) = IdDIII(H4) is non-trivial.

4.4 Examples for class C

By Theorem 3.9.15, we know that the index I2
C can only take even values. Let N be a positive

even integer. We want to show that for every even integer 2l there is a H : T→ GL(N) in class

C with I2
C(H) = 2l. As for class D, it is enough to consider N = 2.

For N = 2 we can suppose that Σ =

(
0 −1

1 0

)
C, where C denotes the complex conjugation.

Let us choose the ansatz H(k) = ~h(k) ·~σ for ~h : T→ S2. Then H belongs to symmetry class C if

and only if ~h(τk) = ~h(k). The 2D-index is again given by the Chern number and thus equal to

deg(−~h). Let q : T→ T/(k ∼ τk) be the quotient map. Note that T/(k ∼ τk) ∼= S2 as sketched

in Figure 3 and that deg(q) = 2. For every l ∈ Z there is a map fl : T/(k ∼ τk) → S2 with

deg(fl) = l. Then ~h := fl ◦ q satisfies ~h(τk) = ~h(k) and deg(~h) = 2l. Thus the corresponding H

has index I2
C(H) = −2l.
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Figure 3: Edges of the same colour are identified. Left: A sketch of T where we want to identify
τk ∼ k. Middle: T/(τk ∼ k) corresponds to the right half of the square with the edges identified
as sketched. After gluing the edges accordingly, we obtain a sphere (right).
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