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FOUNDATIONS OF QUANTUM MECHANICS

In-class problems for the exercise class

Problem 5: Conserved quantities
Recall the equation of motion of Newtonian mechanics:

m = Qi) (1
Suppose that V' is invariant under rotations and translations:
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for all @ € R* and R € SO(3). Show that
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are conserved.

Problem 6: Galilean relativity
A Galiean change of space-time coordinates (“Galilean boost”) is given by

=x+vt, t'=t (6)
with a constant v € R? called the relative velocity.

(a) Show that if V' is translation invariant then Newton’s equation of motion is invariant under
Galilean boosts: If t — (Q,, ..., Q) is a solution then so is t — (Q, ..., Q'y).

(b) Show that if V' is translation invariant and (¢, «,...,xy) is a solution of the Schrodinger
equation, then so is
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Problem 7: Polarization identity
Verify that

(W16) = 1(16 + 0I12 — o = 81 — ill6 + ig|> + illw — igll*), 8)

using the properties of an inner product. The polarization identity allows us to express inner
products in terms of norms.



