Foundations of Quantum Mechanics

In-class problems for the exercise class

Problem 5: Conserved quantities

Recall the equation of motion of Newtonian mechanics:

$$
\begin{equation*}
m_{i} \frac{d^{2} \boldsymbol{Q}_{i}}{d t^{2}}=-\nabla_{i} V\left(\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{N}\right) \tag{1}
\end{equation*}
$$

Suppose that V is invariant under rotations and translations:

$$
\begin{equation*}
V\left(R \boldsymbol{Q}_{1}+\boldsymbol{a}, \ldots, R \boldsymbol{Q}_{N}+\boldsymbol{a}\right)=V\left(\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{N}\right) \tag{2}
\end{equation*}
$$

for all $\boldsymbol{a} \in \mathbb{R}^{3}$ and $R \in S O(3)$. Show that

$$
\begin{align*}
\text { the energy } E & =\sum_{k=1}^{N} \frac{m_{k}}{2} \boldsymbol{v}_{k}^{2}+V\left(\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{N}\right) \tag{3}\\
\text { the momentum } \boldsymbol{p} & =\sum_{k=1}^{N} m_{k} \boldsymbol{v}_{k} \tag{4}\\
\text { the angular momentum } \boldsymbol{L} & =\sum_{k=1}^{N} m_{k} \boldsymbol{Q}_{k} \times \boldsymbol{v}_{k} \tag{5}
\end{align*}
$$

are conserved.

Problem 6: Galilean relativity

A Galiean change of space-time coordinates ("Galilean boost") is given by

$$
\begin{equation*}
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{v} t, \quad t^{\prime}=t \tag{6}
\end{equation*}
$$

with a constant $\boldsymbol{v} \in \mathbb{R}^{3}$ called the relative velocity.
(a) Show that if V is translation invariant then Newton's equation of motion is invariant under Galilean boosts: If $t \mapsto\left(\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{N}\right)$ is a solution then so is $t \mapsto\left(\boldsymbol{Q}_{1}^{\prime}, \ldots, \boldsymbol{Q}_{N}^{\prime}\right)$.
(b) Show that if V is translation invariant and $\psi\left(t, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)$ is a solution of the Schrödinger equation, then so is

$$
\begin{equation*}
\psi^{\prime}\left(t^{\prime}, \boldsymbol{x}_{1}^{\prime}, \ldots, \boldsymbol{x}_{N}^{\prime}\right)=\exp \left[\frac{i}{\hbar} \sum_{i=1}^{N} m_{i}\left(\boldsymbol{x}_{i}^{\prime} \cdot \boldsymbol{v}-\frac{1}{2} \boldsymbol{v}^{2} t^{\prime}\right)\right] \psi\left(t^{\prime}, \boldsymbol{x}_{1}^{\prime}-\boldsymbol{v} t^{\prime}, \ldots, \boldsymbol{x}_{N}^{\prime}-\boldsymbol{v} t^{\prime}\right) . \tag{7}
\end{equation*}
$$

Problem 7: Polarization identity

Verify that

$$
\begin{equation*}
\langle\psi \mid \phi\rangle=\frac{1}{4}\left(\|\psi+\phi\|^{2}-\|\psi-\phi\|^{2}-i\|\psi+i \phi\|^{2}+i\|\psi-i \phi\|^{2}\right) \tag{8}
\end{equation*}
$$

using the properties of an inner product. The polarization identity allows us to express inner products in terms of norms.

