Foundations of Quantum Mechanics

In-class problems for the exercise class

Problem 10: Dirac delta function

Let x be a 1 -d variable and $g_{\sigma}(x)$ the Gaussian probability density,

$$
\begin{equation*}
g_{\sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}} \tag{1}
\end{equation*}
$$

The Dirac δ function can be defined heuristically as

$$
\begin{equation*}
\delta(x)=\lim _{\sigma \rightarrow 0} g_{\sigma}(x) \tag{2}
\end{equation*}
$$

Since $\delta(x)=0$ for $x \neq 0$ and $\delta(0)=\infty$, the δ function is not a function in the ordinary sense; it is called a distribution. Based on the heuristic (2), one defines

$$
\begin{equation*}
\int_{\mathbb{R}} \delta(x-a) f(x) d x:=\lim _{\sigma \rightarrow 0} \int_{\mathbb{R}} g_{\sigma}(x-a) f(x) d x . \tag{3}
\end{equation*}
$$

It follows that if the function f is continuous at a, then

$$
\begin{equation*}
\int_{\mathbb{R}} \delta(x-a) f(x) d x=f(a) \tag{4}
\end{equation*}
$$

Mathematicians take this as the definition of the δ distribution; that is, they define $\delta(\cdot-a)$ as a linear operator from some function space such as \mathscr{S} (Schwartz space) to $\mathbb{C}, f \mapsto f(a)$.
(a) Find the Fourier transform $\widehat{\delta}_{a}(k)$ of $\delta_{a}(x)=\delta(x-a)$ with arbitrary constant $a \in \mathbb{R}$. Find the function ψ whose Fourier transform is $\widehat{\psi}(k)=\delta(k-b)$ with arbitrary constant $b \in \mathbb{R}$.
(b) One defines the derivative δ^{\prime} of the δ function by

$$
\begin{equation*}
\delta^{\prime}(x)=\lim _{\sigma \rightarrow 0} g_{\sigma}^{\prime}(x) \tag{5}
\end{equation*}
$$

and its integrals by

$$
\begin{equation*}
\int_{\mathbb{R}} \delta^{\prime}(x-a) f(x) d x:=\lim _{\sigma \rightarrow 0} \int_{\mathbb{R}} g_{\sigma}^{\prime}(x-a) f(x) d x \tag{6}
\end{equation*}
$$

Using integration by parts and (4), show that (for $f \in \mathscr{S}$)

$$
\begin{equation*}
\int_{\mathbb{R}} \delta^{\prime}(x-a) f(x) d x=-f^{\prime}(a) \tag{7}
\end{equation*}
$$

Problem 11: Delta function in higher dimension

(a) The d-dimensional Dirac delta function is defined by

$$
\begin{equation*}
\delta^{d}(\boldsymbol{x}-\boldsymbol{a})=\delta\left(x_{1}-a_{1}\right) \cdots \delta\left(x_{d}-a_{d}\right) \tag{8}
\end{equation*}
$$

Instead of $\delta^{d}(\boldsymbol{x}-\boldsymbol{a})$, one sometimes simply writes $\delta(\boldsymbol{x}-\boldsymbol{a})$. Verify that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \delta^{d}(\boldsymbol{x}-\boldsymbol{a}) f(\boldsymbol{x}) d^{d} \boldsymbol{x}=f(\boldsymbol{a}) \tag{9}
\end{equation*}
$$

(b) For a generalized orthonormal basis (GONB) with continuous parameter, $\left\{\phi_{\boldsymbol{k}}: \boldsymbol{k} \in \mathbb{R}^{d}\right\}$, one requires that

$$
\begin{equation*}
\left\langle\phi_{\boldsymbol{k}_{1}} \mid \phi_{\boldsymbol{k}_{2}}\right\rangle=\delta^{d}\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) . \tag{10}
\end{equation*}
$$

Verify this relation for the basis functions of Fourier transformation,

$$
\begin{equation*}
\phi_{\boldsymbol{k}}(\boldsymbol{x})=(2 \pi)^{-d / 2} e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \tag{11}
\end{equation*}
$$

(c) Verify that every $\phi_{\boldsymbol{k}}$ as given by (11) is an eigenfunction of each momentum operator $P_{j}=$ $-i \hbar \partial / \partial x_{j}, j=1, \ldots, d$. Thus, (11) defines a GONB that simultaneously diagonalizes all P_{j}. It is therefore called the momentum basis.
(d) Now consider another basis, given by

$$
\begin{equation*}
\phi_{\boldsymbol{y}}(\boldsymbol{x})=\delta^{d}(\boldsymbol{x}-\boldsymbol{y}) . \tag{12}
\end{equation*}
$$

Verify Eq. (10) for these functions. Then verify that every $\phi_{\boldsymbol{y}}$ is an eigenfunction of each position operator $X_{j} \psi(\boldsymbol{x})=x_{j} \psi(\boldsymbol{x}), j=1, \ldots, d$. Thus, (12) defines a GONB that simultaneously diagonalizes all X_{j}. It is therefore called the position basis.

