Foundations of Quantum Mechanics

Written homework due Wednesday November 29, 2017

Exercise 18: Essay question. Describe the delayed-choice double-slit experiment. Why does it seem paradoxical? How does the paradox get resolved in Bohmian mechanics?

Exercise 19: Spinors

Verify that $|\boldsymbol{\omega}(\phi)|=\|\phi\|_{S}^{2}=\phi^{*} \phi$. Proceed as follows: By (9.6), $\boldsymbol{\omega}(z \phi)=|z|^{2} \boldsymbol{\omega}(\phi)$, it suffices to show that unit spinors are associated with unit vectors. By (9.6) again, it suffices to consider ϕ with $\phi_{1} \in \mathbb{R}$ (else replace ϕ by $e^{i \theta} \phi$ with appropriate θ). So we can assume, without loss of generality, $\phi=\left(\cos \alpha, e^{i \beta} \sin \alpha\right)$ with $\alpha, \beta \in \mathbb{R}$. Evaluate $\phi^{*} \boldsymbol{\sigma} \phi$ explicitly in terms of α and β, using the explicit formulas (9.3) for $\boldsymbol{\sigma}$. Then check that it is a unit vector.

Exercise 20: Iterated Stern-Gerlach experiment

Consider the following experiment on a single electron. Suppose it has a wave function of the product form $\psi_{s}(\boldsymbol{x})=\phi_{s} \chi(\boldsymbol{x})$, and we focus only on the spinor. The initial spinor is $\phi=(1,0)$.
(a) A Stern-Gerlach experiment in the y-direction (or σ_{2}-measurement) is carried out, then a Stern-Gerlach experiment in the z-direction (or σ_{3}-measurement). Both measurements taken together have four possible outcomes: up-up, up-down, down-up, down-down. Find the probabilities of the four outcomes.
(b) As in (a), but now the z-experiment comes first and the y-experiment afterwards. (The fact that the answer to (b) is different from that to (a) is often expressed by saying that the observables σ_{2} and σ_{3} "cannot be measured simultaneously.")
(c) More generally, if the two self-adjoint matrices A and B have spectral decomposition $A=$ $\sum_{\alpha} \alpha P_{\alpha}$ and $B=\sum_{\beta} \beta Q_{\beta}$, what is the joint distribution of the outcomes if A is measured first and B right afterwards? What if B is measured first and A right afterwards? Show that the two agree iff every P_{α} commutes with every Q_{β}. (This happens iff $A B=B A$.)

Exercise 21: Lie algebras of $S O(3)$ and $S U(2)$
A Lie group G, named after Sophus Lie (1842-1899), is a group that is also a manifold such that the group multiplication and inversion are smooth mappings. Examples of Lie groups include $G L(n), S O(n), U(n), S U(n)$. The elements infinitesimally close to 1 in G form the Lie algebra g of G; more precisely, g is the tangent space of 1 , which is here the set

$$
\left\{\left.\frac{d A}{d t}(t=0) \right\rvert\, A:(-1,1) \rightarrow G \text { smooth, } A(0)=1\right\} .
$$

(a) Determine the Lie algebras $s o(3)$ and $s u(2)$ as subspaces of the space of all real 3×3 (complex 2×2) matrices.
(b) The exponential mapping exp : $g \rightarrow G$ can be heuristically understood as follows: For $X \in g$, a corresponding group element infinitesimally close to 1 can be written as $1+X / n$ with n a large natural number (so $1 / n$ serves as an infinitesimal $d t$). Hence, roughly speaking, $(1+X / n) \in G$,
hence $(1+X / n)^{n} \in G$; take the limit $n \rightarrow \infty$ to obtain $\exp (X)=: e^{X}$. Verify that the matrix exponential (defined by the exponential series) actually maps so(3) to $S O(3)$ and $s u(2)$ to $S U(2)$. (Hint: diagonalize $X \in g$.)
(c) For $X, Y \in g$, what does group multiplication of e^{X} and e^{Y} look like? We know that the solution Z of $e^{Z}=e^{X} e^{Y}$ is $Z=X+Y$ if X and Y commute, but not in general. A version of the Baker-Campbell-Hausdorff formula says that

$$
\text { the solution of } e^{Z}=e^{-t X} e^{-t Y} e^{t(X+Y)} \text { is } Z=\frac{1}{2} t^{2}[X, Y]+O\left(t^{3}\right)
$$

as $t \rightarrow 0$, with $[X, Y]=X Y-Y X$ the commutator or Lie bracket. The Lie bracket is an operation on g that encodes how the group multiplication deviates from addition in g. Thus, one defines a Lie algebra in general as a vector space together with a bracket $[\cdot, \cdot]: g \times g \rightarrow g$ that is anti-symmetric, bilinear, and satisfies the Jacobi identity

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

Verify that $s o(3)$ and $s u(2)$ (with commutators as Lie brackets) are isomorphic Lie algebras. (Hint: The Pauli matrices have something to do with rotations about the x-, y-, and z-axis.)

Reading assignment due Friday December 1, 2017: J. Bell, Are There Quantum Jumps?, chapter 22 in Speakable and Unspeakable in Quantum Mechanics, sections 1-3 and 5

