Foundations of Quantum Mechanics

Written homework due Wednesday December 13, 2017

Exercise 27: Essay question. Why does GRW theory make approximately the same predictions as the quantum formalism?

Exercise 28: Uncertainty relation

Compute both sides of the generalized uncertainty relation

$$\sigma_A \sigma_B \ge \frac{1}{2} \left| \langle \psi | [A, B] | \psi \rangle \right| \tag{1}$$

for $A = \sigma_1$, $B = \sigma_2$, and $\psi = |z\text{-down}\rangle$.

Hint: In order to obtain the standard deviations σ_A and σ_B , compute first the probability distribution for A and B according to Born's rule.

Exercise 29: Poisson process

For the Poisson process with rate $\lambda > 0$, determine for any fixed $t_0 > 0$ the distribution of $X_{t_0} = \#\{k : T_k < t_0\}$, the number of events up to time t_0 . Follow two reasonings:

(a) Heuristically, assume that an event occurs in every infinitesimal time interval [t, t + dt] independently of disjoint intervals with probability λdt .

Hint: Divide $[0, t_0]$ in $n \gg 1$ subintervals of length $dt = t_0/n$.

(b) Rigorously, assume that the random variables T_1, T_2, \ldots are defined to be $T_k = W_1 + \ldots + W_k$ with all waiting times W_k independent and exponentially distributed with parameter λ , i.e., with density $\rho(w) = 1_{w>0} \lambda e^{-\lambda w}$.

Hint:

$$\mathbb{P}(X_{t_0} \ge 2) = \mathbb{P}(W_1 + W_2 < t_0) = \int_0^{t_0} dw_1 \int_0^{t_0 - w_1} dw_2 \,\rho(w_1) \,\rho(w_2) \quad \text{and}$$
$$\mathbb{P}(X_{t_0} = k) = \mathbb{P}(X_{t_0} \ge k) - \mathbb{P}(X_{t_0} \ge k + 1) \,.$$

Exercise 30: Spin singlet state

Verify through direct computation that in the spin space $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$ of two spin- $\frac{1}{2}$ particles,

$$|x-up\rangle|x-down\rangle - |x-down\rangle|x-up\rangle$$

= $|y-up\rangle|y-down\rangle - |y-down\rangle|y-up\rangle$ (2)
= $|z-up\rangle|z-down\rangle - |z-down\rangle|z-up\rangle$

up to phase factors.

Reading assignment due Friday December 15, 2017: J. Bell: Six possible worlds of quantum mechanics. *Speakable and Unspeakable in Quantum Mechanics*, pages 181–195.