Foundations of Quantum Mechanics

Written homework due Wednesday January 17, 2018

Exercise 31: Essay question. Describe the Einstein-Podolsky-Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 32: Consider two random variables X, Y that assume only values ± 1. Their joint distribution can be described by a 2×2 table of probabilities. (a) Give a typical example of such a table, but not the one of (16.12) for any θ. For your table, compute (b) the marginal distribution of X and (c) that of Y, as well as (d) the conditional distribution of X, given that $Y=+1$, (e) the expectation value $\mathbb{E}(X)$, and (f) $\mathbb{E}(X Y)$.

Exercise 33: Quantum Zeno effect

Zeno of Elea (c. $490-$ c. 430 BCE) was a Greek philosopher who claimed that motion and time cannot exist because they are inherently paradoxical notions, a claim which he tried to support by formulating various paradoxes, including one involving Achilles and a turtle. In modern times, Alan Turing (of computer science fame, lived 1912-1954) reportedly first discovered the following effect, which was later named after Zeno because of its paradoxical flavor: Suppose a quantum particle moves in 1 d , and its initial wave function $\psi_{0}(x)$ is concentrated in the negative half axis $(-\infty, 0)$. We want to model, as a kind of time measurement, a detector, located at the origin, that clicks when the particle arrives. To this end, we imagine that the detector performs, at times $n \tau$ with $n \in \mathbb{N}$ and time resolution $\tau>0$, a quantum measurement of $1_{x \geq 0}$, i.e., of whether the particle is in the right half axis. The ideal detector would seem to correspond to the limit $\tau \rightarrow 0$; however, in this limit, the probability that the detector ever clicks is 0 . "A watched pot never boils," wrote Misra und Sudarshan. ${ }^{1}$

Prove the following simplified version: In a 2 d Hilbert space \mathbb{C}^{2}, let $\psi_{0}=(1,0)$ evolve with Hamiltonian $H=\sigma_{1}$, interrupted by a quantum measurement of σ_{3} at times $n \tau$ for all $n \in \mathbb{N}$. For any fixed $T>0$, the probability that any of the $\approx T / \tau$ measurements in the time interval $[0, T]$ yields the result -1 tends to 0 as $\tau \rightarrow 0$.

Exercise 34: Let \mathscr{H} be a Hilbert space of finite dimension. For the purposes of this problem, a projection-valued measure (PVM) acting on \mathscr{H} is a collection of finitely many projections P_{z} such that $\sum_{z} P_{z}=I$. Let \mathscr{K}_{z} denote the subspace to which P_{z} projects. Show that \mathscr{H} is the orthogonal sum of the \mathscr{K}_{z}, i.e., that $\mathscr{K}_{z} \perp \mathscr{K}_{z^{\prime}}$ for $z \neq z^{\prime}$ and $\operatorname{span}\left(\cup_{z} \mathscr{K}_{z}\right)=\mathscr{H}$.

Reading assignment due Friday January 19, 2018:
N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 48: 696-702 (1935)

[^0]
[^0]: ${ }^{1}$ B. Misra and E.C.G. Sudarshan: The Zeno's paradox in quantum theory. Journal of Mathematical Physics 18: 756-763 (1977)

