Foundations of Quantum Mechanics

In-class problems for the exercise class

Problem 13: True or false?

a) $R^{\dagger} R$ is always a positive operator.
b) If E is a positive operator, then so is $R^{\dagger} E R$.
c) The bounded positive operators form a subspace of the space of bounded operators.
d) The sum of two projections is positive only if they commute.
e) $e^{A t}$ is a positive operator for every self-adjoint A and $t \in \mathbb{R}$.
f) A multiplication operator $\psi \mapsto f \psi$ is positive iff the set $\{x: f(x)<0\}$ has measure zero.

Problem 14: According to the spectral theorem, every self-adjoint operator A in \mathscr{H} is unitarily equivalent to a multiplication operator M in $L^{2}(\Omega)$. Let $U: \mathscr{H} \rightarrow L^{2}(\Omega)$ denote that unitary operator, so $A=U^{-1} M U$. Give an explicit expression for the spectral PVM of A in terms of U and M.

Problem 15: Consecutive quantum measurements

Let A_{1}, \ldots, A_{n} be self-adjoint operators in \mathscr{H} whose spectra $\sigma\left(A_{k}\right)$ are purely discrete (i.e., countable), so that

$$
A_{k}=\sum_{\alpha \in \sigma\left(A_{k}\right)} \alpha P_{k, \alpha}
$$

with $P_{k, \alpha}$ the projection to the eigenspace of A_{k} with eigenvalue α. Consider a quantum system with initial wave function $\psi_{0} \in \mathscr{H}$ with $\left\|\psi_{0}\right\|=1$ at time t_{0}. At times $t_{1}<t_{2}<\ldots<t_{n}$, ideal quantum measurements of A_{1}, \ldots, A_{n} (respectively) are carried out with outcomes $Z_{1}, \ldots, Z_{n} \in \mathbb{R}$ $\left(t_{0}<t_{1}\right)$. Show that there is a POVM E on \mathbb{R}^{n} such that

$$
\mathbb{P}\left(\left(Z_{1}, \ldots, Z_{n}\right) \in B\right)=\left\langle\psi_{0}\right| E(B)\left|\psi_{0}\right\rangle
$$

and give an explicit expression for $E(B)$.
Problem 16: Let E be a POVM on the finite set \mathscr{Z} acting on \mathscr{H}. Show that if the E_{z} commute pairwise, then there are a unitary $U: \mathscr{H} \rightarrow L^{2}(\Omega)$ and functions $f_{z}: \Omega \rightarrow[0,1]$ such that

$$
\sum_{z} f_{z}(\omega)=1 \quad \forall \omega \in \Omega
$$

and $E_{z}=U^{-1} f_{z} U$.
Problem 17: a) Suppose E_{1} and E_{2} are POVMs on \mathscr{Z}_{1} and \mathscr{Z}_{2}, respectively, both acting on \mathscr{H}; let $q_{1}, q_{2} \in[0,1]$ with $q_{1}+q_{2}=1$. Show that $E(B):=q_{1} E_{1}\left(B \cap \mathscr{Z}_{1}\right)+q_{2} E_{2}\left(B \cap \mathscr{Z}_{2}\right)$ defines a POVM on $\mathscr{Z}_{1} \cup \mathscr{Z}_{2}$.
b) Suppose experiment \mathscr{E}_{1} has distribution of outcomes $\langle\psi| E_{1}(\cdot)|\psi\rangle$, and \mathscr{E}_{2} has distribution of outcomes $\langle\psi| E_{2}(\cdot)|\psi\rangle$. Describe an experiment with distribution of outcomes $\langle\psi| E(\cdot)|\psi\rangle$.
c) Give an example of a POVM for which the E_{z} do not pairwise commute. Suggestion: Choose $E_{1}(z)$ that does not commute with $E_{2}\left(z^{\prime}\right)$ for $\mathscr{Z}_{1} \cap \mathscr{Z}_{2}=\emptyset$.

