# Foundations of Quantum Mechanics 

Written homework due Wednesday January 31, 2018
Exercise 35: Essay question. Describe Einstein's boxes argument.

## Exercise 36: Main theorem about POVMs

The proof of the main theorem from Bohmian mechanics assumes that at the initial time $t_{i}$ of the experiment, the joint wave function factorizes, $\Psi_{t_{i}}=\psi \otimes \phi$. What if factorization is not exactly satisfied, but only approximately? Then the probability distribution of the outcome $Z$ is still approximately given by $\langle\psi| E(\cdot)|\psi\rangle$. To make this statement precise, suppose that

$$
\begin{equation*}
\Psi_{t}=c \psi \otimes \phi+\Delta \Psi \tag{1}
\end{equation*}
$$

where $\|\Delta \Psi\| \ll 1,\|\psi\|=\|\phi\|=1$, and $c=\sqrt{1-\|\Delta \Psi\|^{2}}$ (which is close to 1 ). Use the CauchySchwarz inequality to show that, for any $B \subseteq \mathscr{Z}$,

$$
\begin{equation*}
|\mathbb{P}(Z \in B)-\langle\psi| E(B)| \psi\rangle \mid<3\|\Delta \Psi\| . \tag{2}
\end{equation*}
$$

## Exercise 37: Tensor product

Suppose the Hilbert spaces $\mathscr{H}_{a}$ and $\mathscr{H}_{b}$ have finite dimensions. Show that for any operators $T_{a}: \mathscr{H}_{a} \rightarrow \mathscr{H}_{a}$ and $T_{b}: \mathscr{H}_{b} \rightarrow \mathscr{H}_{b}$, there is a unique operator $T_{a} \otimes T_{b}: \mathscr{H}_{a} \otimes \mathscr{H}_{b} \rightarrow \mathscr{H}_{a} \otimes \mathscr{H}_{b}$ satisfying

$$
\begin{equation*}
\left(T_{a} \otimes T_{b}\right)\left(\psi_{a} \otimes \psi_{b}\right)=\left(T_{a} \psi_{a}\right) \otimes\left(T_{b} \psi_{b}\right) \tag{3}
\end{equation*}
$$

for all $\psi_{a} \in \mathscr{H}_{a}$ and $\psi_{b} \in \mathscr{H}_{b}$, and that it has the following properties. (Hint: Choose ONBs.)
(i) $\left(T_{a} \otimes T_{b}\right)^{\dagger}=T_{a}^{\dagger} \otimes T_{b}^{\dagger}$
(ii) $\left(T_{a} \otimes T_{b}\right)\left(S_{a} \otimes S_{b}\right)=\left(T_{a} S_{a}\right) \otimes\left(T_{b} S_{b}\right)$
(iii) $\operatorname{tr}\left(T_{a} \otimes T_{b}\right)=\left(\operatorname{tr} T_{a}\right)\left(\operatorname{tr} T_{b}\right)$.

Remark: For two non-interacting systems, the Hamiltonian is of the form $H=H_{a} \otimes I_{b}+I_{a} \otimes H_{b}$, and the time evolution is $e^{-i H t}=e^{-i H_{a} t} \otimes e^{-i H_{b} t}$, i.e., of the form $U_{t}=U_{a, t} \otimes U_{b, t}$.

## Exercise 38: Main theorem about POVMs and tensor product

Prove that in Bohmian mechanics, an experiment in which the apparatus interacts only with system $a$ but not with system $b$ has a POVM of the form

$$
\begin{equation*}
E(B)=E_{a}(B) \otimes I_{b} \tag{4}
\end{equation*}
$$

for all $B \subseteq \mathscr{Z}$. To this end, adapt the proof of the main theorem of POVMs. Suppose the experiment $\mathscr{E}$ begins at time $t_{i}$ and ends at time $t_{f}$, and suppose the wave function of the apparatus, system $a$, and system $b$ at time $t_{i}$ is $\Psi\left(t_{i}\right)=\phi \otimes \psi$ with $\psi \in \mathscr{H}_{a} \otimes \mathscr{H}_{b}$, so $\Psi\left(t_{i}\right) \in \mathscr{H}_{\text {app }} \otimes \mathscr{H}_{a} \otimes \mathscr{H}_{b}$. Use the remark at the end of Exercise 37. Assume further that the outcome $Z$ is a function $\zeta$ of the configuration $Q_{\text {app }}$ of the apparatus at time $t_{f}$.

Reading assignment due Friday February 2, 2018:
J. Bell: Against 'measurement.' Physics World, August 1990, pages 33-40.

