
Probability Distribution of the Time at Which
an Ideal Detector Clicks

Roderich Tumulka

Rutgers University, New Jersey, USA, and
Eberhard-Karls-Universität Tübingen, Germany
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Problem of detection time and place
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T ∈ [0,∞),X ∈ ∂Ω,Z = (T ,X) Picture: redrawn after Detlef Dürr
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Predicted detection time distribution

Although QM does not provide a self-adjoint time operator, it makes
an unambiguous prediction for the distribution of Z (though in an
un-orthodox way): Solve the Schrödinger equation of the big system
formed by “the” particle, all detectors, a clock, and a recording
device, constructed so as to keep a record of which detector clicked
when. At a late time t, make a quantum measurement of the record.

It follows that the distribution of Z is given by a POVM,

Probψ0(Z ∈ ∆) = 〈ψ0|E (∆)|ψ0〉 .

POVM (positive-operator-valued measure) on Z

Def: For every (measurable) set ∆ ⊆ Z , E (∆) is a positive operator.
E (Z ) = I , and E (∆1 ∪∆2 ∪ . . .) = E (∆1) + E (∆2) + . . .
if ∆1,∆2, . . . are mutually disjoint.
Special case: PVM (projection-valued measure)

Is there a practical way of computing E (·), at least approximately?
Without solving a Schrödinger equation for > 1023 particles?
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The ideal detector hypothesis

While the correct POVM E (·) will depend on all details of the
detectors, including their quantum states at time 0, the hope (“ideal
detector hypothesis”) is that there is a particular POVM E0 (or
maybe Eκ depending on one or few parameters κ) in the cloud of
E ’s that is a good approximation and can be expressed by some
simple rule.

The hope is nourished by two facts:

In practice, detection probabilities do not seem to depend much on
the detailed states of the detectors (except that different types of
detectors are sensitive to different particle species and at different
energy ranges).
For detection at a single time t, the distribution of X is |ψ|2,
independently of the details of the detector.

In this talk, I am proposing a rule defining a POVM Eκ for an ideal
detector.

Roderich Tumulka (Rutgers University) Ideal Detector



Quantum Zeno effect [Misra and Sudarshan 1977]
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Say, Ω = {x1 ≤ 0} and ∂Ω = plane
{x1 = 0}.
Make an instantaneous quantum
measurement of the event x1 > 0
(the projection operator 1x1>0) at
regular time intervals τ > 0.

Consider the limit τ → 0.

Result: In the limit, the probability
of ever finding x1 > 0 becomes 0.

That seems to make any concept of ideal detector impossible.
(“A watched pot never boils.”)

—or at least, any concept of a “hard” detector that detects the
particle as soon as it arrives at ∂Ω; a “soft” detector that takes a
while to notice the particle still seems possible.

Yet, I will show that even a hard detector is possible.
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Allcock’s [1969] difficulty

Again, Ω = {x1 ≤ 0} and ∂Ω = plane {x1 = 0}.
Model of soft detector:

Consider Schrödinger equation in R3 with complex potential

V (x) =

{
−iv if x1 > 0

0 if x1 ≤ 0 ,

where v > 0 is a constant.

This means that in the right half space the particle has rate 2v/~ of
being absorbed (loss of ‖ψ‖2). Prob(X ∈ d3x|T ) = |ψT (x)|2d3x.
Average lifetime in the detector volume = ~/2v .

Difficulty: In the hard limit v →∞, ψt(x) = 0 for x1 > 0 and all
t > 0, so the particle never gets detected.

Again, a hard ideal detector seems impossible.
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Proposed solution: The “absorbing boundary rule”

Solve the 1-particle Schrödinger

equation i~
∂ψ

∂t
= − ~2

2m∇
2ψ + Vψ with

“absorbing boundary condition” (ABC)

n(x) · ∇ψ(x) = iκψ(x)

at every x ∈ ∂Ω, where n(x) =
outward unit normal vector to ∂Ω at x,
and κ > 0 a constant.

x

n

Ω

ABC implies that the probability current jψ = ~
m Im[ψ∗∇ψ] points

outward at ∂Ω:

n · j = ~
m Im[ψ∗n · ∇ψ] = ~

m Im[ψ∗iκψ] = ~
mκ|ψ|

2 ≥ 0 .

Probψ0

(
T ∈ dt,X ∈ d2x

)
= n(x) · jψt (x) dt d2x assuming ‖ψ0‖ = 1.

If the experiments get interrupted at time t before detection, the
collapsed wave function is ψt/‖ψt‖.

Roderich Tumulka (Rutgers University) Ideal Detector



Properties

‖ψt‖2 = Probψ0(T > t) “survival probability,” decreasing in t

The time evolution of ψ is not unitary (Hamiltonian not self-adjoint)
due to loss at ∂Ω, but well defined by the Hille-Yosida theorem:
ψt = Wtψ0 with Wt = e−iHt/~ a contraction semigroup (t ≥ 0) on
L2(Ω).

skew-adjoint part(H) is a negative operator, i.e., Im〈ψ|Hψ〉 ≤ 0.

H is not necessarily diagonalizable; if it is, then
spectrum ⊆ {x + iy ∈ C : y ≤ 0} = lower half plane.

In Bohmian mechanics, the particle with |ψ0|2-distributed initial
condition X(0) moves according to the equation of motion

dX

dt
=

jψt (X(t))

|ψt(X(t))|2

until it hits ∂Ω at time T and place X = X(T ), and gets absorbed.
Probψ0

(
X(t) ∈ d3x

)
= |ψt(x)|2 d3x.

energy-time uncertainty relation ∆E ∆T ≥ ~/2

with E referring to − ~2

2m∇
2 on L2(R3)
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POVM

Eκ
(
dt × d2x

)
= ~κ

m W †t |x〉〈x|Wt dt d
2x,

Eκ(T =∞) = lim
t→∞

W †t Wt

on Z = [0,∞)× ∂Ω ∪ {∞}, acting on L2(Ω)

not PVM ⇒ no “eigenstates of detection time”
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Why to expect an absorbing boundary

configuration space:
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Literature

The ABC was considered by Werner in 1987 [J. Math. Phys.], indeed
for detection time distribution (“any contraction semigroup
determines a natural arrival time observable”).

Afterward [1988], Werner studied less compelling approaches to the
detection time distribution.

The ABC received almost no attention. In an 86-pages review paper
[Muga and Leavens, Phys. Rep. 2000], the ABC was mentioned in
passing but not even written down.

The ABC was mentioned by Fevens and Jiang in 1999 [SIAM J. Sci.
Comput.] for numerical simulation of the Schrödinger eq. on R with
finitely many lattice points, but dropped in favor of a higher-order
BC that absorbs more of the wave.
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Reflection from ∂Ω

While the Bohmian particle always
gets absorbed when it hits ∂Ω, the
wave function gets partly reflected
and partly absorbed.

Absorption coeff. Ak = 1− Rk ,
reflection coefficient Rk = |ck |2
for eigenfct ψ(x) = e ikx + cke

−ikx

satisfying ABC ψ′(0) = iκψ(0)
in 1D.

κ = wave number of maximal ab-
sorption

Corollary: The presence of the de-
tectors changes the Bohmian tra-
jectories even before they reach
∂Ω.

. Plot of Ak
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Lattice version (e.g., in 1D)

lattice of mesh width ε > 0: Λ = {ε, 2ε, 3ε, . . . ,Nε}
H = L2(Λ) = CN

Hamiltonian = discrete Laplacian, H = −(~2/2mε2)×
−1 1

1 − 2 1
1 − 2 1

1 − 2 1
1 − 2 1

1 − 1

 or


iκε− 1 1

1 − 2 1
1 − 2 1

1 − 2 1
1 − 2 1

1 iκε− 1


Neumann b.c. absorbing b.c.

H not self-adjoint, Wt = e−iHt/~ contraction semigroup (t ≥ 0)

Probψ0(T ∈ dt,X = Nε) = ~κ
mε |ψt(Nε)|2

Roderich Tumulka (Rutgers University) Ideal Detector



Avoiding the quantum Zeno effect

Again, lattice of mesh width ε, Λ = {ε, 2ε, 3ε, . . . ,Nε}
Neumann b.c.

quantum measurement of P = |Nε〉〈Nε| at times τ, 2τ, 3τ, . . .

quantum Zeno effect occurs in the limit τ → 0, ε = const.,
N = const.

The limit τ → 0, ε→ 0, N →∞, Nε→ L, τ/ε3 → 4mκ/~ leads to
the absorbing boundary rule (no quantum Zeno effect!).

Thus, a non-trivial limit is possible.
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Avoiding Allcock’s difficulty

Again, Ω = {x1 ≤ 0} and ∂Ω = plane {x1 = 0}.
Different model of soft detector:

Consider Schrödinger equation in {x1 ≤ L} with complex potential

V (x) =

{
−iv if x1 > 0

0 if x1 ≤ 0

and Neumann boundary condition

∂ψ

∂x1
(L, x2, x3) = 0 .

The hard limit v →∞, L→ 0, vL→ ~2κ
2m > 0 leads to the

absorbing boundary rule.

Thus, a non-trivial hard limit is possible.
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Further developments

continuum limit of the lattice version reproduces the continuum
version

rigorous existence of ψt , Z , Eκ

version of the rule for moving detectors

version of the rule for several particles, in particular how to collapse
ψ after the first detection

version of the rule for particles with spin

one may measure a spin component simultaneously with the
detection

version of the rule for the Dirac equation

non-relativistic limit of the Dirac equation with ABC

version of the rule in curved space-time

boundary may be partly spacelike and partly timelike

formulation in terms of multi-time wave functions for n particles

. . . so the absorbing boundary rule is very robust!
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Thank you for your attention
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