Time evolution of closed macroscopic quantum systems towards thermal equilibrium

Roderich Tumulka

14 May 2024

Main reference: arXiv 2210.10018

(E)

Recent book

Fundamental Theories of Physics 215

Angelo Bassi Sheldon Goldstein Roderich Tumulka Nino Zanghi *Editors*

Physics and the Nature of Reality

D Springer

Essays in Memory of Detlef Dürr

Joel Lebowitz

Shelly Goldstein

Nino Zanghì

Stefan Teufel

Christian Mastrodonato

Cornelia Vogel

Cedric Igelspacher

Barbara Roos

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

Motivation

Roderich Tumulka Macroscopic Quantum Systems

・ロト・日本・日本・日本・日本・日本

1st law of thermodynamics

"The energy of the universe is constant." (Clausius 1865)

2nd law of thermodynamics

"The entropy of the universe tends toward a maximum." (Clausius 1865)

Oth law of thermodynamics

"If two thermodynamic systems are both in thermal equilibrium with a third system, then they are in thermal equilibrium with each other." (Fowler 1939)

"Minus first" law of thermodynamics

"Every macroscopic system sooner or later reaches thermal equilibrium." (Marsland-Brown-Valente 2015)

The theme of the talk is to derive the 2nd and -1st from quantum mechanics.

ヘロン 不可と 不可と イロン

э

- Different authors have proposed rather different statements of the 2nd law:
 - some concern only thermal equilibrium states,
 - some the impossibility of certain (perpetual motion) machines,
 - some the knowledge of observers.
 - I'm interested here in statements about the evolution from certain (low-entropy) states to certain other (high-entropy) states.
- There are different concepts of entropy:
 - Shannon entropy $S_{\rm S} = -\sum_i p_i \log p_i$ measures the width of a probability distribution $(p_i)_i$.
 - Entanglement entropy quantifies the amount of entanglement between 2 systems.
 - I'm interested here in thermal entropy (in and out of thermal equilibrium) following Boltzmann, roughly $S = \log \#$ micro states $(k_{\rm B} = 1)$.

→ 伺 → → ヨ → → ヨ → の Q (や

- There are different concepts of thermalization:
 - Some authors consider a system coupled to an infinite reservoir or to random perturbations.
 - But thermalization is not limited to open systems or stochastic evolution: Consider the isolated system consisting of a hot brick touching a cold one. The temperatures will even out.
 - I'm interested here in the thermalization of a closed system.
- There are different concepts of thermal equilibrium:
 - "Thermal state" usually means a canonical density matrix $\rho = \frac{1}{Z}e^{-\beta H}$ (highly mixed).
 - I'm interested here in thermodynamic behavior of a quantum system in a pure state ψ ("thermalization in the strong sense").
 - Such behavior has been studied in particular in connection with the *eigenstate thermalization hypothesis* [Deutsch 1991, Srednicki cond-mat/9403051], but also [von Neumann 1929, Schrödinger 1952, Lebowitz 1993, Tasaki cond-mat/9707253, Popescu-Short-Winter quant-ph/0511225, Reimann 0710.4214, Gemmer-Mahler-Michel 2004]

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

So we consider

- a macroscopic quantum system (say, $N > 10^{20}$ particles)
- \bullet in a bounded volume $\Lambda \subset \mathbb{R}^3$
- isolated, evolves unitarily $i \frac{\partial \psi}{\partial t} = H \psi$ in Hilbert space \mathscr{H}

•
$$H = \sum_{\alpha} E_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$$

•
$$\mathbb{S}(\mathscr{H}) := \{\psi \in \mathscr{H} : \|\psi\| = 1\}$$
 unit sphere

э

And even in closed quantum systems in pure states, two kinds of thermal equilibrium occur:

• Microscopic thermal equilibrium (MITE): All local observables have the same Born distribution in ψ as in a thermodynamic ensemble.

This occurs for most ψ in the ensemble by a theorem known as canonical typicality [Gemmer-Mahler-Michel 2004, Popescu-Short-Winter quant-ph/0511225, Goldstein-Lebowitz-T-Zanghì cond-mat/0511091, for canonical ensemble (GAP measure) Teufel-T-Vogel 2307.15624].

 Macroscopic thermal equilibrium (MATE): All macroscopic observables have the same nearly-deterministic value in ψ as in a thermodynamic ensemble.
 I will focus on this kind.

向下 イヨト イヨト

Setting the stage

ヘロト 人間 ト 人間 ト 人間 トー

∃ < n < 0</p>

Macro spaces

[von Neumann 1929, van Kampen 1992, Lebowitz 1993]

- ℋ = ⊕_{ν∈N} ℋ_ν. Different macro states ν correspond to mutually orthogonal subspaces ℋ_ν ("macro spaces"). Vectors in the same ℋ_ν should "look macroscopically the same."
- Ex: ν = "Between 60 and 61% of the particles are in the left half of the volume."
- There is some arbitrariness in the choice of \mathscr{H}_{ν} , but it is expected to not matter much as $N \to \infty$. We regard the \mathscr{H}_{ν} 's as given.
- Classical analog: partition of phase space into "macro sets."
- $d_{\nu} := \dim \mathscr{H}_{\nu} \gg 1$, of order $10^{10^{10}}$. Notation $P_{\nu} :=$ proj to \mathscr{H}_{ν}
- In the micro-canonical "energy shell"

$$\mathscr{H}_{\mathrm{mc}} = \mathrm{span} \Big\{ \phi_{\alpha} : E - \Delta E < E_{\alpha} \leq E \Big\}$$

 $(\Delta E = \text{resolution of macroscopic energy measurements})$, usually one of the \mathscr{H}_{ν} has most dimensions, " $\nu = eq$ ":

$$\frac{\dim \mathscr{H}_{\rm eq}}{\dim \mathscr{H}_{\rm mc}} = 1 - \varepsilon \,, \quad \varepsilon \ll 1 \ \ \text{(in practice } \varepsilon \lesssim 10^{-10^5}\text{)}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ●

Macroscopic observables

- von Neumann 1929: Macro observables commute exactly. If they don't, adjust them a little ("rounding") so they do.
- Some authors [De Roeck-Maes-Netočný math-ph/0601027, Tasaki 1507.06479] argued that rounding is not essential; but since rounding makes the discussion easier, I will stick with it.
- von Neumann 1929: For macro observables *M*, the eigenvalue spacing should be the resolution of macroscopic measurements (⇒ *M* highly degenerate). *H_ν* are just the joint eigenspaces of all macro observables.
- Thus, if $\psi \in \mathscr{H}_{eq}$, every macro observable M assumes its equilibrium value $m_{eq} \approx \operatorname{tr}(M\rho_{mc})$.
- <u>Def:</u> MATE_{δ} : \Leftrightarrow $\|P_{eq}\psi\|^2 \ge 1 \delta$, $\varepsilon \ll \delta \ll 1$.

Fact: Most ψ lie in MATE.

 $u_{\rm mc}({\sf MATE}_{\delta}) \geq 1 - \varepsilon/\delta \approx 1$ with $u_{\rm mc}$ unif. norm'd measure on $\mathbb{S}(\mathscr{H}_{\rm mc})$.

Proof: $\mathbb{E}_{\psi}\langle \psi | P_{eq} | \psi \rangle = \operatorname{tr}(P_{eq}\rho_{mc}) = \dim \mathscr{H}_{eq}/\dim \mathscr{H}_{mc} = 1 - \varepsilon$, but the average of $f(\psi) = \langle \psi | P_{eq} | \psi \rangle$ could not be that high if less than $1 - \varepsilon / \delta$ of all ψ 's had $f(\psi) \ge 1 - \delta$ (Markov ineq) $= \langle \varepsilon \rangle = \langle \varepsilon \rangle = \langle \varepsilon \rangle$

Thermalization, or the -1st Law

イロン イロン イヨン イヨン

= 990

Eigenstate thermalization hypothesis (ETH)

Every eigenvector ϕ_{α} of H is in thermal equilibrium.

Different concepts of thermal equilibrium lead to different versions of ETH; a strong one has been proven for Wigner-type random matrices [Riabov-Erdős 2404.17512]. We only need

MATE-ETH

 $\phi_{\alpha} \in \mathsf{MATE}_{\delta} \ \forall \alpha$

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Let dim $\mathscr{H} < \infty$, $\mathscr{H}_{eq} \subset \mathscr{H}$ any subspace, P_{eq} projection to \mathscr{H}_{eq} .

Proposition: Approach to MATE [GLMTZ 0911.1724]

Let $\eta, \varepsilon > 0$, $\delta = \eta \varepsilon$. If H is non-degenerate and MATE-ETH holds, then any $\psi_0 \in \mathbb{S}(\mathscr{H})$ will spend $(1 - \varepsilon)$ -most of the time in MATE_{η}, i.e.,

$$\liminf_{T \to \infty} rac{1}{T} \left| \left\{ 0 < t < T : \langle \psi_t | P_{ ext{eq}} | \psi_t
angle > 1 - \eta
ight\} \right| > 1 - arepsilon$$

|M| = Lebesgue measure of M

Proof

time average
$$\overline{f(t)} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) \, dt$$

 $\overline{\langle \psi_t | P_{\rm eq} | \psi_t \rangle} = ?$

$$\psi_0 = \sum_{\alpha=1}^{\dim \mathscr{H}} c_\alpha |\phi_\alpha\rangle , \qquad \psi_t = \sum_{\alpha=1}^{\dim \mathscr{H}} e^{-i\mathsf{E}_\alpha t} c_\alpha |\phi_\alpha\rangle$$

$$\begin{split} \overline{\langle \psi_t | P_{\rm eq} | \psi_t \rangle} &= \sum_{\alpha, \beta} \underbrace{\overline{e^{i(E_\alpha - E_\beta)t}}}_{\delta_{\alpha\beta}} c_\alpha^* c_\beta \langle \phi_\alpha | P_{\rm eq} | \phi_\beta \rangle \\ &= \sum_{\alpha} |c_\alpha|^2 \underbrace{\langle \phi_\alpha | P_{\rm eq} | \phi_\alpha \rangle}_{>1 - \eta\varepsilon} \\ &> 1 - \eta\varepsilon \end{split}$$

If error(t) > η for more than ε of the time then $\overline{\operatorname{error}(t)} > \eta \varepsilon$. Thus, $\langle \psi_t | P_{eq} | \psi_t \rangle > 1 - \eta$ for $(1 - \varepsilon)$ -most of the time.

∃ < n < 0</p>

Theorem: Most H satisfy ETH [GLMTZ 0911.1724]

Let $\varepsilon, \delta > 0$, E_{α} pairwise distinct real values, $\{\phi_{\alpha}\}$ a random ONB of \mathscr{H} with uniform distribution, $H = \sum_{\alpha} E_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$. If dim $\mathscr{H} > D_0(\varepsilon, \delta)$ and

$$rac{\dim \mathscr{H}_{ ext{eq}}}{\dim \mathscr{H}} > 1 - arepsilon \, ,$$

then MATE_{2 ε}-ETH is $(1 - \delta)$ -typically satisfied, i.e.,

$$\mathsf{Prob}\bigg\{\langle \phi_{\alpha}| P_{\mathrm{eq}} | \phi_{\alpha} \rangle > 1 - 2\varepsilon \quad \forall \alpha = 1, \dots, \dim \mathscr{H}\bigg\} > 1 - \delta \,.$$

 There do exist exceptional Hamiltonians that don't satisfy MATE-ETH (e.g., non-interacting, Anderson localization).

白 ト イヨ ト イヨ ト

Theorem [after Tasaki-Shiraishi 2310.18880, Tasaki 2404.04533]

Let $\eta > 0$, \mathscr{H} the Hilbert space of N fermions on a 1d periodic lattice with L sites, H the discrete Laplacian with nonzero magnetic field through the ring (no interaction between the fermions), and \mathscr{H}_{eq} the subspace with (say) particle number in the left half of the lattice between $\frac{N}{2} - \eta N$ and $\frac{N}{2} + \eta N$. For N and L/N sufficiently large and under some technical assumptions, H satisfies MATE-ETH.

Ultrafast thermalization

[Goldstein-Hara-Tasaki 1307.0572,1402.3380, Reimann 1603.00669]

Theorem

If the eigenbasis $(\phi_{\alpha})_{\alpha}$ of H is random with uniform distribution and $\nu_0 \neq eq$, then with probability near 1, most $\psi \in \mathbb{S}(\mathscr{H}_{\nu_0})$ reach MATE in a time of the order of the Boltzmann time $\hbar/k_{\rm B}T$ (T = temperature), which is about 10^{-13} seconds at room temperature.

- This doesn't happen in reality, which shows that such random *H* are not realistic.
- This class of random matrices includes GUE. Also *H* satisfying the strong ETH display ultrafast thermalization [Riabov-Erdős 2404.17512].
- The reason behind the theorem is that H provides transition elements for any ψ to directly go to $\mathscr{H}_{\rm eq}.$
- The reason this doesn't happen in reality is local conservation laws.

Does this fact invalidate typicality reasoning?

No. It shows that $(\phi_{\alpha})_{\alpha}$ and the joint eigenbasis of P_{ν} are not unrelated.

The macro history $(u, t) \mapsto \|P_{\nu}\psi_t\|^2$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

▲御▶ ▲ 臣▶ ▲ 臣▶

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

▲御▶ ▲ 臣▶ ▲ 臣▶

Dynamical typicality

[Bartsch-Gemmer 0902.0927, Reimann 1805.07085, rigorously Müller-Gross-Eisert 1003.4982]

• I present here only a simplified statement: Most $\psi_0 \in \mathbb{S}(\mathscr{H}_{\nu_0})$ have the same macro history $(\nu, t) \mapsto ||P_{\nu}\psi_t||^2$ (for a long time).

Theorem [Teufel-T-Vogel 2210.10018]

Let

$$w_{\nu_0\nu}(t) := \frac{1}{d_{\nu_0}} \operatorname{tr} \Big[P_{\nu_0} \exp(iHt) P_{\nu} \exp(-iHt) \Big] = \mathbb{E}_{\psi_0 \sim u_{\mathbb{S}(\mathscr{H}_{\nu_0})}} \| P_{\nu}\psi_t \|^2 \,.$$

For every $t \in \mathbb{R}$, T > 0, $\varepsilon > 0$, and $(1 - \varepsilon)$ -most $\psi_0 \in \mathbb{S}(\mathscr{H}_{\nu_0})$,

$$\left| \| \mathcal{P}_{\nu} \psi_t \|^2 - w_{\nu_0 \nu}(t) \right| \leq rac{1}{\sqrt{arepsilon d_{
u_0}}}$$

and

$$rac{1}{T}\int_0^T\!\!dt\, \left|\|P_
u\psi_t\|^2 - w_{
u_0
u}(t)
ight|^2 \leq rac{1}{arepsilon d_{
u_0}}\,.$$

・ロト ・ 一下・ ・ ヨト・

э.

Numerical example

For a random Gaussian band matrix, we can show that also the *relative* errors are small, and thus cover the case of small $w_{\nu_0\nu}$ [T-T-V 2303.13242].

Fraction equilibrium = generalized normal equilibrium

- Most $\psi \in \mathbb{S}(\mathscr{H})$ have $\|P_{\nu}\psi\|^2 = d_{\nu}/d$ (the "normal histogram").
- Von Neumann proposed to take this as the definition of thermal equilibrium. But it is not really a *thermal* equilibrium, it is a different kind of equilibrium ("normal equilibrium").
- But it tends to occur in the long run:

Theorem on normal typicality [von Neumann 1929, GLMTZ 0907.0108]

Let $\varepsilon > 0$, and let H have arbitrary distinct eigenvalues with nondegenerate gaps and a uniformly distributed eigenbasis. Under some technical conditions, with probability close to 1, every $\psi \in \mathbb{S}(\mathcal{H})$ satisfies for most $t \in [0, \infty)$ that

$$\left\| ||P_{\nu}\psi_t||^2 - \frac{d_{\nu}}{d} \right| < \varepsilon \frac{d_{\nu}}{d} \,.$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Let's move away from the unrealistic assumption that $(\phi_{\alpha})_{\alpha}$ is uniformly distributed: Every initial macro state ν_0 has a typical long-time histogram, $\|P_{\nu}\psi_t\|^2 \approx M_{\nu_0\nu}$.

Theorem on fraction equilibrium [Teufel-T-Vogel 2210.10018]

Let ν_0, ν be any macro states, and let H have eigenvalues $e \in \mathcal{E}$, eigenprojections Π_e , maximal degeneracy D_E and maximal gap degeneracy D_G . Define

$$M_{\nu_0\nu} := \frac{1}{d_{\nu_0}} \sum_{e \in \mathcal{E}} \operatorname{tr} \left(P_{\nu_0} \Pi_e P_{\nu} \Pi_e \right) \,. \tag{1}$$

同 ト イヨ ト イヨ ト 二 ヨ

Then for any $\varepsilon, \delta > 0$, $(1 - \varepsilon)$ -most $\psi_0 \in \mathbb{S}(\mathscr{H}_{\nu_0})$ are such that for $(1 - \delta)$ -most $t \in [0, \infty)$

$$\|P_{\nu}\psi_t\|^2 - M_{\nu_0\nu} \bigg| \leq 4\sqrt{\frac{D_E D_G}{\delta\varepsilon d_{\nu_0}}} \min\left\{1, \frac{d_{\nu}}{d_{\nu_0}}\right\}.$$

Entropy and the 2nd law

・ロン ・四 と ・ ヨ と ・ 日 と

∃ < n < 0</p>

- <u>Def:</u> quantum Boltzmann entropy $S_{\rm B}(\nu) := \log d_{\nu}$ [Lebowitz 1993, Griffiths 1994, Goldstein-Lebowitz-T-Zanghì 1903.11870].
- $S_{
 m B}(
 m eq) pprox \log \dim \mathscr{H}_{
 m mc}$
- Since a general ψ is a superposition of different ν 's, it is also a superposition of different entropy values.
- Thus, it is not obvious what it means to say that entropy increases.

- Some authors have considered the *average* entropy $\sum_{\nu} \|P_{\nu}\psi_t\|^2 S(\nu)$. But we don't just want the average, we want the entropy *in our branch of the wave function*.
- Here, the foundations of statistical mechanics touch the foundations of quantum mechanics. Orthodox QM is too vage. Many-worlds or spontaneous collapse (such as GRW) or hidden variables (such as Bohmian mechanics) provide justified answers.
- In Bohmian mechanics, an actual macro state cannot always be defined, but in practical cases it can. Then the net amount of probability transported $\nu \rightarrow \nu'$ per time plausibly agrees with the discrete probability current of QM,

 $J_{\nu\nu'} = 2 \operatorname{Im} \langle \psi | P_{\nu} H P_{\nu'} | \psi \rangle \,.$

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Goal: the "strong 2nd law"

For reasonable H and macro spaces \mathscr{H}_{ν} , any ν_0 , and most $\psi \in \mathbb{S}(\mathscr{H}_{\nu_0})$, the discrete current

$$J_{\nu\nu'} = 2 \operatorname{Im} \langle \psi_t | P_\nu H P_{\nu'} | \psi_t \rangle$$

points overwhelmingly from smaller $\mathscr{H}_{\nu'}$ to larger \mathscr{H}_{ν} for $t \in [0, T]$, where T is the time scale of reaching MATE.

Slightly weaker version

For reasonable H and macro spaces \mathscr{H}_{ν} , any ν_0 , and most $\psi \in \mathbb{S}(\mathscr{H}_{\nu_0})$, the histogram $(\nu, t) \mapsto ||P_{\nu}\psi_t||^2$ is approximately right-moving for $t \in [0, T]$, where T is the time scale of reaching MATE.

(四) (日) (日)

van Kampen's hypothesis [1992]

 $p_\nu(t):=\|P_\nu\psi_t\|^2$ evolves approximately like the distribution of a Markov process on the set ${\mathcal N}$ of macro states,

$$\frac{dp_{\nu}}{dt} = \sum_{\nu' \neq \nu} \left(\sigma_{\nu\nu'} \, p_{\nu'}(t) - \sigma_{\nu'\nu} \, p_{\nu}(t) \right) \tag{2}$$

with jump rates $\sigma_{\nu\nu'}$ given for $\nu \neq \nu'$ by

$$\sigma_{\nu\nu'} = \frac{1}{\tau d_{\nu'}} \operatorname{tr} \left(e^{iH\tau} P_{\nu} e^{-iH\tau} P_{\nu'} \right) = \frac{1}{\tau} \mathbb{E}_{\psi_0 \sim u_{\mathbb{S}(\mathscr{H}_{\nu'})}} \| P_{\nu} \psi_{\tau} \|^2 \qquad (3)$$

for $\tau > 0$ that is small (so the expression doesn't depend much on τ) but not too small (or else $\sigma_{\nu\nu'} = 0$).

同 ト イヨ ト イヨ ト 二 ヨ

Van Kampen gave some heuristic reasons for his hypothesis, Strasberg-Winter-Gemmer-Wang [2209.07977] further arguments in support of it and the following

Hypothesis of local detailed balance	
$rac{\sigma_{ u u'}}{\sigma_{ u' u}}pprox rac{d_ u}{d_{ u'}}$	(4)

Whether (2), (3), (4) are satisfied in practice remains an open problem.

Together, (2), (3), (4) almost imply the strong 2nd law.

They do imply that the histogram of S_{qB} is approximately right-moving. If $J_{\nu\nu'} \approx \sigma_{\nu\nu'} p_{\nu'} - \sigma_{\nu'\nu} p_{\nu}$, which at least seems plausible, then also the strong 2nd law is fulfilled.

同下 イヨト イヨト ニヨ

Thank you for your attention

イロン イヨン イヨン イヨン