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1st law of thermodynamics

“The energy of the universe is constant.” (Clausius 1865)

2nd law of thermodynamics

“The entropy of the universe tends toward a maximum.” (Clausius 1865)

0th law of thermodynamics

“If two thermodynamic systems are both in thermal equilibrium with a
third system, then they are in thermal equilibrium with each other.”
(Fowler 1939)

“Minus first” law of thermodynamics

“Every macroscopic system sooner or later reaches thermal equilibrium.”
(Marsland-Brown-Valente 2015)

The theme of the talk is to derive the 2nd and −1st from quantum
mechanics.
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Different authors have proposed rather different statements of the
2nd law:

some concern only thermal equilibrium states,
some the impossibility of certain (perpetual motion) machines,
some the knowledge of observers.
I’m interested here in statements about the evolution from certain
(low-entropy) states to certain other (high-entropy) states.

There are different concepts of entropy:

Shannon entropy SS = −
∑

i pi log pi measures the width of a
probability distribution (pi )i .
Entanglement entropy quantifies the amount of entanglement
between 2 systems.
I’m interested here in thermal entropy (in and out of thermal
equilibrium) following Boltzmann, roughly S = log# micro states
(kB = 1).

Roderich Tumulka Macroscopic Quantum Systems



There are different concepts of thermalization:

Some authors consider a system coupled to an infinite reservoir or to
random perturbations.
But thermalization is not limited to open systems or stochastic
evolution: Consider the isolated system consisting of a hot brick
touching a cold one. The temperatures will even out.
I’m interested here in the thermalization of a closed system.

There are different concepts of thermal equilibrium:

“Thermal state” usually means a canonical density matrix
ρ = 1

Z
e−βH (highly mixed).

I’m interested here in thermodynamic behavior of a quantum system
in a pure state ψ (“thermalization in the strong sense”).
Such behavior has been studied in particular in connection with the
eigenstate thermalization hypothesis [Deutsch 1991, Srednicki

cond-mat/9403051], but also [von Neumann 1929, Schrödinger 1952, Lebowitz

1993, Tasaki cond-mat/9707253, Popescu-Short-Winter quant-ph/0511225, Reimann

0710.4214, Gemmer-Mahler-Michel 2004]
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So we consider

a macroscopic quantum system (say, N > 1020 particles)

in a bounded volume Λ ⊂ R3

isolated, evolves unitarily i
∂ψ

∂t
= Hψ in Hilbert space H

H =
∑
α Eα|ϕα⟩⟨ϕα|

S(H ) := {ψ ∈ H : ∥ψ∥ = 1} unit sphere
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And even in closed quantum systems in pure states, two kinds of thermal
equilibrium occur:

Microscopic thermal equilibrium (MITE): All local observables
have the same Born distribution in ψ as in a thermodynamic
ensemble.
This occurs for most ψ in the ensemble by a theorem known as
canonical typicality [Gemmer-Mahler-Michel 2004, Popescu-Short-Winter

quant-ph/0511225, Goldstein-Lebowitz-T-Zangh̀ı cond-mat/0511091, for canonical

ensemble (GAP measure) Teufel-T-Vogel 2307.15624].

Macroscopic thermal equilibrium (MATE): All macroscopic
observables have the same nearly-deterministic value in ψ as in a
thermodynamic ensemble.
I will focus on this kind.
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Setting the stage
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Macro spaces
[von Neumann 1929, van Kampen 1992, Lebowitz 1993]

H =
⊕

ν∈N Hν . Different macro states ν correspond to mutually
orthogonal subspaces Hν (“macro spaces”). Vectors in the same
Hν should “look macroscopically the same.”

Ex: ν = “Between 60 and 61% of the particles are in the left half of
the volume.”

There is some arbitrariness in the choice of Hν , but it is expected to
not matter much as N → ∞. We regard the Hν ’s as given.

Classical analog: partition of phase space into “macro sets.”

dν := dimHν ≫ 1, of order 1010
10

. Notation Pν := proj to Hν

In the micro-canonical “energy shell”

Hmc = span
{
ϕα : E −∆E < Eα ≤ E

}
(∆E = resolution of macroscopic energy measurements), usually
one of the Hν has most dimensions, “ν = eq”:

dimHeq

dimHmc
= 1− ε , ε≪ 1 (in practice ε ≲ 10−105)
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Macroscopic observables

von Neumann 1929: Macro observables commute exactly. If they
don’t, adjust them a little (“rounding”) so they do.

Some authors [De Roeck-Maes-Netočný math-ph/0601027, Tasaki 1507.06479]
argued that rounding is not essential; but since rounding makes the
discussion easier, I will stick with it.

von Neumann 1929: For macro observables M, the eigenvalue
spacing should be the resolution of macroscopic measurements (⇒
M highly degenerate). Hν are just the joint eigenspaces of all
macro observables.

Thus, if ψ ∈ Heq, every macro observable M assumes its equilibrium
value meq ≈ tr(Mρmc).

Def: MATEδ :⇔ ∥Peqψ∥2 ≥ 1− δ, ε≪ δ ≪ 1.

Fact: Most ψ lie in MATE.

umc(MATEδ) ≥ 1− ε/δ ≈ 1 with umc unif. norm’d measure on S(Hmc).

Proof: Eψ⟨ψ|Peq|ψ⟩ = tr(Peqρmc) = dimHeq/ dimHmc = 1− ε, but
the average of f (ψ) = ⟨ψ|Peq|ψ⟩ could not be that high if less than
1− ε/δ of all ψ’s had f (ψ) ≥ 1− δ (Markov ineq). □
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Thermalization, or the −1st Law
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Eigenstate thermalization hypothesis (ETH)

Every eigenvector ϕα of H is in thermal equilibrium.

Different concepts of thermal equilibrium lead to different versions of
ETH; a strong one has been proven for Wigner-type random matrices
[Riabov-Erdős 2404.17512]. We only need

MATE-ETH

ϕα ∈ MATEδ ∀α
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Let dimH <∞, Heq ⊂ H any subspace, Peq projection to Heq.

Proposition: Approach to MATE [GLMTZ 0911.1724]

Let η, ε > 0, δ = ηε. If H is non-degenerate and MATE-ETH holds, then
any ψ0 ∈ S(H ) will spend (1− ε)-most of the time in MATEη, i.e.,

lim inf
T→∞

1

T

∣∣∣∣{0 < t < T : ⟨ψt |Peq|ψt⟩ > 1− η
}∣∣∣∣ > 1− ε .

|M| = Lebesgue measure of M
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Proof

time average f (t) = lim
T→∞

1

T

∫ T

0

f (t) dt

⟨ψt |Peq|ψt⟩ = ?

ψ0 =
dimH∑
α=1

cα|ϕα⟩ , ψt =
dimH∑
α=1

e−iEαtcα|ϕα⟩

⟨ψt |Peq|ψt⟩ =
∑
α,β

e i(Eα−Eβ)t︸ ︷︷ ︸
δαβ

c∗αcβ⟨ϕα|Peq|ϕβ⟩

=
∑
α

|cα|2 ⟨ϕα|Peq|ϕα⟩︸ ︷︷ ︸
>1−ηε

> 1− ηε

If error(t) > η for more than ε of the time then error(t) > ηε.

Thus, ⟨ψt |Peq|ψt⟩ > 1− η for (1− ε)-most of the time. □
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Theorem: Most H satisfy ETH [GLMTZ 0911.1724]

Let ε, δ > 0, Eα pairwise distinct real values, {ϕα} a random ONB of H
with uniform distribution, H =

∑
α Eα|ϕα⟩⟨ϕα|.

If dimH > D0(ε, δ) and

dimHeq

dimH
> 1− ε ,

then MATE2ε-ETH is (1− δ)-typically satisfied, i.e.,

Prob

{
⟨ϕα|Peq|ϕα⟩ > 1− 2ε ∀α = 1, . . . , dimH

}
> 1− δ .

There do exist exceptional Hamiltonians that don’t satisfy
MATE-ETH (e.g., non-interacting, Anderson localization).
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A concrete H that satisfies MATE-ETH

Theorem [after Tasaki-Shiraishi 2310.18880, Tasaki 2404.04533]

Let η > 0, H the Hilbert space of N fermions on a 1d periodic lattice
with L sites, H the discrete Laplacian with nonzero magnetic field
through the ring (no interaction between the fermions), and Heq the
subspace with (say) particle number in the left half of the lattice between
N
2 − ηN and N

2 + ηN. For N and L/N sufficiently large and under some
technical assumptions, H satisfies MATE-ETH.
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Ultrafast thermalization

[Goldstein-Hara-Tasaki 1307.0572,1402.3380, Reimann 1603.00669]

Theorem

If the eigenbasis (ϕα)α of H is random with uniform distribution and
ν0 ̸= eq, then with probability near 1, most ψ ∈ S(Hν0) reach MATE in a
time of the order of the Boltzmann time ℏ/kBT (T = temperature),
which is about 10−13 seconds at room temperature.

This doesn’t happen in reality, which shows that such random H are
not realistic.

This class of random matrices includes GUE. Also H satisfying the
strong ETH display ultrafast thermalization [Riabov-Erdős 2404.17512].

The reason behind the theorem is that H provides transition
elements for any ψ to directly go to Heq.

The reason this doesn’t happen in reality is local conservation laws.

Does this fact invalidate typicality reasoning?

No. It shows that (ϕα)α and the joint eigenbasis of Pν are not unrelated.
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The macro history (ν, t) 7→ ∥Pνψt∥2
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Simulation by Cornelia Vogel:
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Simulation by Cornelia Vogel:
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Simulation by Cornelia Vogel:
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Simulation by Cornelia Vogel:
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Simulation by Cornelia Vogel:
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Simulation by Cornelia Vogel:
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Dynamical typicality

[Bartsch-Gemmer 0902.0927, Reimann 1805.07085, rigorously Müller-Gross-Eisert 1003.4982]

I present here only a simplified statement: Most ψ0 ∈ S(Hν0) have
the same macro history (ν, t) 7→ ∥Pνψt∥2 (for a long time).

Theorem [Teufel-T-Vogel 2210.10018]

Let

wν0ν(t) :=
1

dν0
tr
[
Pν0 exp(iHt)Pν exp(−iHt)

]
= Eψ0∼uS(Hν0

)
∥Pνψt∥2 .

For every t ∈ R, T > 0, ε > 0, and (1− ε)-most ψ0 ∈ S(Hν0),∣∣∣∥Pνψt∥2 − wν0ν(t)
∣∣∣ ≤ 1√

εdν0

and
1

T

∫ T

0

dt
∣∣∥Pνψt∥2 − wν0ν(t)

∣∣2 ≤ 1

εdν0
.
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Numerical example
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For a random Gaussian band matrix, we can show that also the relative
errors are small, and thus cover the case of small wν0ν [T-T-V 2303.13242].
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Fraction equilibrium = generalized normal equilibrium

Most ψ ∈ S(H ) have ∥Pνψ∥2 = dν/d (the “normal histogram”).

Von Neumann proposed to take this as the definition of thermal
equilibrium. But it is not really a thermal equilibrium, it is a
different kind of equilibrium (“normal equilibrium”).

But it tends to occur in the long run:

Theorem on normal typicality [von Neumann 1929, GLMTZ 0907.0108]

Let ε > 0, and let H have arbitrary distinct eigenvalues with
nondegenerate gaps and a uniformly distributed eigenbasis. Under some
technical conditions, with probability close to 1, every ψ ∈ S(H ) satisfies
for most t ∈ [0,∞) that∣∣∣∥Pνψt∥2 −

dν
d

∣∣∣ < ε
dν
d
.
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Let’s move away from the unrealistic assumption that (ϕα)α is uniformly
distributed: Every initial macro state ν0 has a typical long-time
histogram, ∥Pνψt∥2 ≈ Mν0ν .

Theorem on fraction equilibrium [Teufel-T-Vogel 2210.10018]

Let ν0, ν be any macro states, and let H have eigenvalues e ∈ E ,
eigenprojections Πe , maximal degeneracy DE and maximal gap
degeneracy DG . Define

Mν0ν :=
1

dν0

∑
e∈E

tr (Pν0ΠePνΠe) . (1)

Then for any ε, δ > 0, (1− ε)-most ψ0 ∈ S(Hν0) are such that for
(1− δ)-most t ∈ [0,∞)∣∣∣∣∥Pνψt∥2 −Mν0ν

∣∣∣∣ ≤ 4

√
DEDG

δεdν0
min

{
1,

dν
dν0

}
.
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Entropy and the 2nd law
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Def: quantum Boltzmann entropy SB(ν) := log dν
[Lebowitz 1993, Griffiths 1994, Goldstein-Lebowitz-T-Zangh̀ı 1903.11870].

SB(eq) ≈ log dimHmc

Since a general ψ is a superposition of different ν’s, it is also a
superposition of different entropy values.

Thus, it is not obvious what it means to say that entropy increases.
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Some authors have considered the average entropy∑
ν ∥Pνψt∥2 S(ν). But we don’t just want the average, we want the

entropy in our branch of the wave function.

Here, the foundations of statistical mechanics touch the foundations
of quantum mechanics. Orthodox QM is too vage. Many-worlds or
spontaneous collapse (such as GRW) or hidden variables (such as
Bohmian mechanics) provide justified answers.

In Bohmian mechanics, an actual macro state cannot always be
defined, but in practical cases it can. Then the net amount of
probability transported ν → ν′ per time plausibly agrees with the
discrete probability current of QM,

Jνν′ = 2 Im⟨ψ|PνHPν′ |ψ⟩ .
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Goal: the “strong 2nd law”

For reasonable H and macro spaces Hν , any ν0, and most ψ ∈ S(Hν0),
the discrete current

Jνν′ = 2 Im⟨ψt |PνHPν′ |ψt⟩

points overwhelmingly from smaller Hν′ to larger Hν for t ∈ [0,T ],
where T is the time scale of reaching MATE.

Slightly weaker version

For reasonable H and macro spaces Hν , any ν0, and most ψ ∈ S(Hν0),
the histogram (ν, t) 7→ ∥Pνψt∥2 is approximately right-moving for
t ∈ [0,T ], where T is the time scale of reaching MATE.
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van Kampen’s hypothesis [1992]

pν(t) := ∥Pνψt∥2 evolves approximately like the distribution of a Markov
process on the set N of macro states,

dpν
dt

=
∑
ν′ ̸=ν

(
σνν′ pν′(t)− σν′ν pν(t)

)
(2)

with jump rates σνν′ given for ν ̸= ν′ by

σνν′ =
1

τdν′
tr
(
e iHτPνe

−iHτPν′
)
=

1

τ
Eψ0∼uS(H

ν′ )
∥Pνψτ∥2 (3)

for τ > 0 that is small (so the expression doesn’t depend much on τ) but
not too small (or else σνν′ = 0).
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Van Kampen gave some heuristic reasons for his hypothesis,
Strasberg-Winter-Gemmer-Wang [2209.07977] further arguments in
support of it and the following

Hypothesis of local detailed balance

σνν′

σν′ν
≈ dν

dν′
(4)

Whether (2), (3), (4) are satisfied in practice remains an open problem.

Together, (2), (3), (4) almost imply the strong 2nd law.

They do imply that the histogram of SqB is approximately right-moving.
If Jνν′ ≈ σνν′pν′ − σν′νpν , which at least seems plausible, then also the
strong 2nd law is fulfilled.
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Thank you for your attention
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