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The slides of this talk will be available at my webpage
http://www.math.uni-tuebingen.de/de/forschung/maphy/
personen/roderichtumulka/tumulka-talks

Recommended further reading:

My lecture notes: http://www.math.uni-tuebingen.de/de/
forschung/maphy/lehre/ws-2019-20/quantmech/home

J. Bricmont: Making Sense of Quantum Mechanics. Springer (2016)

T. Norsen: Foundations of Quantum Mechanics. Springer (2017)

D. Dürr and D. Lazarovici: Understanding Quantum Mechanics.
Springer (2020)
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Some topics of this course

Copenhagen interpretation

Many worlds

Bohmian mechanics

Collapse theories such as GRW

Quantum measurement and the measurement problem

No-hidden-variables theorems

The Einstein-Podolsky-Rosen argument

Einsteins boxes argument

Bells theorem and nonlocality

Relativistic versions of Bohm/GRW/etc.
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Waves and particles
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A particular physical theory

The universe consists of

a 3d Euclidean space E3,
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where mk > 0, ek 2 R,G > 0 are constants.

This theory is called Newtonian mechanics,
the first sum the “gravitational force,”
the second the “Coulomb force,”
mk the mass of particle k , and ek its charge.
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Bohm’s equation of motion
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(1)

can be rewritten as

dQk

dt
=

current

density
=

j
k
(Q1 . . .QN)

⇢(Q1 . . .QN)

with prob. current j
k
= ~

mk

Im[ ⇤rk ] and prob. density ⇢ =  ⇤ .

Historical curiosity

Bohm (1952) wrote the eq. of motion (1) as a 2nd-order eq. for
d
2Qk/dt2 (by taking d/dt of (1)) and demanded (1) as a constraint

condition on the velocity—a convoluted way of defining the same
trajectories.
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One more axiom of Bohmian mechanics

We write Q(t) := (Q1(t), . . . ,QN(t)) =: configuration at time t

Axiom

At the initial time t = 0 of the universe, Q(0) is random with probability
density ⇢(Q(0) = q) = | (q, t = 0)|2. In short, Q(0) ⇠ | 0|2.

In particular, assume  0 :=  (·, t = 0) 2 L
2(R3N ,C) with k 0k2 = 1.
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Equivariance theorem

If Q(t0) ⇠ | t0 |2 for one t0, then Q(t) ⇠ | t |2 for all t.

Sketch of proof: Prob. ⇢ gets transported by motion with velocity v k

according to

@⇢

@t
= �

NX

k=1

rk · (⇢v k) .

The Schrödinger eq. implies that

@| |2

@t
= �

NX

k=1

rk · j k .

Since v k = j
k
/| |2, if ⇢ = | |2 then @⇢/@t = @| |2/@t.
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Example: the double-slit experiment

Drawn by G. Bauer after Philippidis et al.

Shown: A double-slit and 80 possible paths of Bohm’s particle. The wave
passes through both slits, the particle through only one.
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Most paths arrive where | |2 is large—that’s how the interference
pattern arises. If one slit gets closed, the wave passes through only one
slit, which leads to di↵erent trajectories and less interference.
Bohmian mechanics takes wave–particle dualism literally: there is a wave,
and there is a particle. The path of the particle depends on the wave.
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Feynman Lectures on Physics (1964), Vol. 3

“We cannot make the mystery go away

by “explaining” how it works.” (p. 1)

“Many ideas have been concocted to

try to explain the curve for P12 [...]

None of them has succeeded.” (p. 6)

“No one has found any machinery

behind the law. No one can “ex-

plain” any more than we have just “ex-

plained.” No one will give you any

deeper representation of the situation.

We have no idea about a more basic

mechanism from which these results

can be deduced.” (p. 10)

These statements are too strong. Bohmian me-
chanics does just that.

Richard
Feynman
(1918–1988)

You will sometimes find inaccurate information about quantum
foundations in the literature.
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Wheeler’s delayed-choice experiment (1978)

Wave B from source S falls on screen with slits 1 and 2. The transmitted
waves B 0 are focussed (by lenses or potentials) into intersecting plane
wave trains which fall on particle counters C1 and C2, unless a photo
plate P is inserted in the intersection region. The experimenter can make
the choice, whether or not to push in P , after the waves have passed the
slits. (Drawing: J. Bell)
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Delayed-choice experiment

Wheeler reasoned:

With P , we see an interference pattern, so the electron must be a wave
and have passed through both slits. Without P , if the lower counter C1

clicks, then the electron must have passed through the upper slit 1 only
and be a particle. Without P , if the upper counter C2 clicks, then the
electron must have passed through the lower slit 2 only and be a particle.

As if we could “choose, later, whether the [electron], earlier, went
through one slit or two!” (Bell)
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Delayed-choice experiment in Bohmian mechanics

No retrocausation, no mystery. (Picture: Dewdney 1985)
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Delayed-choice experiment

Now some steps in Wheeler’s reasoning appear strange:

If one assumes, as in orthodox QM, that there are no trajectories, and if
there were no detectors at the slits, then there is no fact about which slit
the electron went through. Wheeler claims the counter reveals which slit
the electron took. But how can anything reveal which slit the electron
took if the electron didn’t take a slit?
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Delayed-choice experiment in Bohmian mechanics

One more observation (Bell 1980): If the Bohmian particle went through
the upper slit, it ends up in the upper counter—the opposite of what
Wheeler took for granted!

“Wheeler’s fallacy”

If the lower slit is closed and only the upper slit is open, then only the
lower counter clicks; and vice versa. Wheeler concluded that also when
both slits are open, an electron detected in the lower counter must have
passed through the upper slit—a non sequitur.
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Rules of quantum mechanics
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Rules of QM

Nearly all views about QM agree about the rules for making empirical
predictions:

Unitary evolution: The wave function  of an isolated system

evolves according to the Schrödinger equation,  t = e
�iHt/~ 0 with

H the Hamiltonian operator in Hilbert space H .

Born’s rule: When an observer makes a “quantum measurement” of
the observable A associated with the self-adjoint operator A with
spectral decomposition A =

P
↵ ↵P↵ on a system with wave

function  , the outcome is the eigenvalue ↵ with probability
kP↵ k2 = h |P↵ i.
Collapse rule: After a quantum measurement of A with outcome ↵,
the wave function gets replaced by

 t+ =
P↵ t�
kP↵ t�k

.
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Collapse of the wave function in Bohmian mechanics

The wave function  of the universe does not collapse (but evolves
according to the Schrödinger equation).
The wave function  of a system is the conditional wave function

 (x) = N  (x ,Y )

with N = normalizing constant, x = configuration variable of the
system, Y = actual (Bohmian configuration) of the environment.

If x-system and y -system are disentangled,  (x , y) = �(x)�(y), and
don’t interact, then the conditional wave function  obeys its own
Schrödinger eq., but in general it doesn’t.

In BM,  collapses.

Here is why:
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Evolution of  in configuration space of particle + detector:
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Collapse of  in Bohmian mechanics

Since Q = (X ,Y ) ⇠ | |2, Q lies in one of the packets; say, in the
upper.

Conditional on the configuration Y of the detector,  (x) is a
cross-section of the upper packet. That is,  has collapsed.

Moreover, decoherence occurs: The two packets of  do not overlap
in configuration space and will not overlap any more in the future
(for the next 10100 years). (As usual with macroscopically di↵erent
packets.)

As a consequence, Q = (X ,Y ) will be guided only by the packet of
 containing Q (for the next 10100 years).

Thus,  will follow the upper packet for the next 10100 years.
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Measurement process more generally

Consider an ideal quantum measurement of the observable A =
P

↵ ↵P↵

with eigenvalues ↵ and P↵ the projection to the corresponding
eigenspace. It begins at t0 and ends at t1. At t0, the wave fct of object
and apparatus is

 (t0) =  (t0)⌦ �

with  (t0) = wave fct of the object, � = ready state of the apparatus.
By the Schrödinger eq.,  evolves to

 (t1) = e
�iH(t1�t0) (t0) .
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Measurement process, continued

We have that  (t0) =  (t0)⌦ � and  (t1) = e
�iH(t1�t0) (t0).

Suppose first that the object is in an eigenstate  ↵ of A. Then

 ↵ :=  (t1) = e
�iH(t1�t0)[ ↵ ⌦ �]

should be a state in which the apparatus displays the value ↵ (e.g., by
the position of a needle).

Suppose next that  (t0) =
P

↵ c↵ ↵ is an arbitrary superposition. Then

 (t0) =
X

↵

c↵ [ ↵ ⌦ �]

and, by linearity of the Schrödinger eq.,

 (t1) =
X

↵

c↵ ↵ ,

i.e., a superposition of wave functions of apparatuses displaying di↵erent
outcomes.
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Evolution of  in configuration space of system x + apparatus y :
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Evolution of  in configuration space of system x + apparatus y :
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Measurement outcomes in BM

Y provides the actual position of the needle, and thus the actual
outcome Z = f (Y ).

Prob(Z = ↵) = k ↵k2 = |c↵|2, in agreement with the rules of QM.

If  ↵ =  ↵ ⌦ �↵ for all ↵ (i.e., if the measurement process doesn’t
change the state of the object), then the cond. wf is  =  ↵|↵=Z

(collapse to eigenfunction), in agreement with the rules of QM.

Moreover, by decoherence, also in  the lower packet can henceforth
be ignored.
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As a consequence

Observers inhabiting a Bohmian universe (made out of Bohmian particles)
observe random-looking outcomes of their experiments whose statistics
agree with the rules of quantum mechanics for making predictions.

In short, Bohmian mechanics is empirically adequate.
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A theory like this was believed to be impossible

Werner Heisenberg in 1958:

“We can no longer speak of the behavior of the
particle independently of the process of
observation.”
“The idea of an objective real world whose
smallest parts exist objectively in the same sense
as stones or trees exist, independently of whether
or not we observe them [...], is impossible.”

Well, Heisenberg was wrong. Bohmian mechanics
is a counter-example to the impossibility claim.

W. Heisenberg
(1901–1976)
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But how can BM be compatible with Heisenberg’s
uncertainty relation?
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And how can BM be compatible with non-commuting
observables?

Because di↵erent choices of the ready state � of the apparatus lead to
di↵erent kinds of interactions with the object.

Concrete example (Stern-Gerlach experiment) in Lecture 3.
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History

1924: Einstein toys with the idea that photons
may have trajectories obeying an equation of
motion similar to that of Bohmian mechanics.
John Slater joins him.

1926: Louis de Broglie discovers Bohmian
mechanics, calls it “pilot-wave theory.”

1945: Nathan Rosen (the R of EPR)
independently discovers Bohmian mechanics.

1952: David Bohm independently discovers
Bohmian mechanics. He is the first to realize
that the theory is empirically adequate.

David Bohm
(1917–1992)
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Thank you for your attention

Roderich Tumulka Interpretations of QM


