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The EPR argument (in a version due to Bohm 1951)

Claim: There are additional variables beyond the wave function.

Consider 2 spin- 1
2 particles at spacelike separation with “singlet” spin

state
ψ = 1√

2

(∣∣↑↓〉− ∣∣↓↑〉) .
Alice measures σz of particle 1, obtains A = +1 (with prob 1/2) or
A = −1 (with prob 1/2). ψ collapses to

ψ′ =
∣∣↑↓〉 if A = +1 or ψ′ =

∣∣↓↑〉 if A = −1.

Bob measures σz of particle 2, obtains B = −A with prob 1. It follows
that particle 2 had a definite σz value already before Bob’s measurement.

Locality assumption

Spacelike separated events cannot influence each other. In particular,
Alice’s measurement cannot change the physical situation on Bob’s side.

It follows that Bob’s particle had a definite σz value even before Alice’s
measurement, although ψ is not an eigenstate of I ⊗ σz . Quod erat
demonstrandum.
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The original 1935 EPR argument

Claim: There are additional variables beyond the wave function.

Consider 2 spin- 1
2 particles in 1d with entangled wave fct

ψ(x1, x2) = δ(x1 − x2 + x0)

with x0 a (large) constant. Alice measures the position of particle 1,
obtains X1 (uniformly distributed). ψ collapses to

ψ′(x1, x2) = δ(x1 − X1) δ(X1 − x2 + x0) .

Bob, spacelike separated from Alice, measures the position of particle 2
and obtains X2 = X1 + x0 with prob 1. It follows that particle 2 had a
definite position already before Bob’s measurement.

Locality assumption

Spacelike separated events cannot influence each other. In particular,
Alice’s measurement cannot change the physical situation on Bob’s side.

It follows that Bob’s particle had a definite position even before Alice’s
measurement, although ψ is not a position eigenstate. Quod erat
demonstrandum.
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Confusion about the EPR argument

In their paper, EPR went on to consider momentum measurements
and argue that by measuring position on particle 1 and momentum
on particle 2, you could know both the position and the momentum
of each particle.

But that distracted most readers from the central claim and its
argument. Bohr replied only to the second part.

In QM, we often practice not to think about physical reality but to
focus on observable predictions. But you can’t understand the
argument unless you think about physical reality.
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Too good to be true

The EPR argument is actually correct.

Upshot

Locality ⇒ hidden variables

Since

1√
2

(∣∣↑↓〉− ∣∣↓↑〉)
= 1√

2

(∣∣→←〉− ∣∣←→〉)
= 1√

2

(∣∣a-up
〉∣∣a-down

〉
−
∣∣a-down

〉∣∣a-up
〉)

up to a phase for every direction a ∈ R3, the same argument provides the
existence of a hidden variable for every a · σ.

However, from the no-hidden-variable theorems, we know that that can’t
be.
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Bell’s nonlocality theorem
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Nonlocality in Bohmian mechanics

dQ1

dt
depends on Q2(t), no matter the distance |Q1(t)−Q2(t)|.

(And correspondingly, BM doesn’t contain hidden variables for a · σ.)
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Nonlocality

Bell’s nonlocality theorem (1964)

Some predictions of QM are incompatible with
locality, regardless of which interpretation of QM is
used. Put differently, certain statistics of outcomes
(predicted by QM) are possible only if spacelike
separated events sometimes influence each other.

These statistics were confirmed in experiment [Aspect
1982 etc.].

John Bell
(1928–1990)

Bell’s lemma (1964)

Non-contextual hidden variables cannot reproduce the statistics predicted
by QM for certain experiments.

Upshot of EPR’s argument

Locality implies the existence of non-contextual hidden variables for all
local observables.

Note: EPR + Bell’s lemma ⇒ Bell’s theorem
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Bell’s proof (1)

Again singlet state

ψ = 1√
2

(∣∣↑↓〉− ∣∣↓↑〉)
Alice chooses arbitrary direction a ∈ R3, |a| = 1, and measures a · σ on
her particle. Bob chooses b and measures b · σ. QM predicts the
following probabilities (a · b = cos θ):

+ −

+ 1
2 sin2(θ/2) 1

2 cos2(θ/2)

− 1
2 cos2(θ/2) 1

2 sin2(θ/2)
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Bell’s proof (2)

By locality and EPR, Alice and Bob’s outcome must be v1a = va·σ⊗I and
v2b = vI⊗b·σ. These variables have the properties

via = ±1

v2a = −v1a

Now consider 3 directions α,β,γ for a or b. Then

P
(
v1α = v1β or v1β = v1γ or v1γ = v1α

)
= 1

⇒ P
(
v1α = v1β

)
+ P

(
v1β = v1γ

)
+ P

(
v1γ = v1α

)
≥ 1

⇒ P
(
v1α 6= v2β

)
+ P

(
v1β 6= v2γ

)
+ P

(
v1γ 6= v2α

)
≥ 1

but the QM prediction is P(A 6= B) = cos2(θ/2), which yields 3/4 for the
left-hand side if the angles between α,β,γ are all 120◦. �
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Misunderstandings about Bell’s theorem

It is sometimes reported that Bell proved local hidden variables
impossible. That is true but misses the point. That is Bell’s lemma, not
Bell’s theorem. Bell’s theorem says that any local theory is impossible.

Part 1 (EPR): QM + locality ⇒ P

Part 2: QM ⇒ not P

Conclusion: QM ⇒ not locality

(P = existence of non-contextual hidden variables)

It is also sometimes reported that Bell disproved “local realism,” and that
we can choose to abandon either locality or realism. That’s not true.
There is no alternative to abandoning locality.
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Bohmian mechanics is nonlocal.

GRW is nonlocal.

Many-worlds is nonlocal.

It may seem that nonlocality conflicts with relativity, but we will see that
this is not so.
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Einstein’s boxes argument

[Einstein ∼ 1927, unpublished], [Norsen: “Einstein’s boxes” Am. J. Phys. 2005]

The wave function of a particle is half in a box in Paris and half in a box
in Tokyo. Apply detectors to both boxes at time t (in some Lorentz
frame)—at spacelike separation. One and only one detector clicks. If it is
assumed that there was no fact about “where the particle actually is”
before the detectors were applied, then this effect is nonlocal.

Einstein intended this as an argument against the Copenhagen camp.

The argument shows that any collapse theory is nonlocal.
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Sm is nonlocal (1)

[Allori et al. 2011]

You might think Sm is local because of the following fact:

m(t, x) in B does not depend on external fields in A or on the quantum
state in A (it is a function of the reduced density matrix ρB = trA|ψ〉〈ψ|
with ψ including apparatus).

I conclude that nothing that Alice can do in A, nor any events in A, can
influence m(t, x) in B. And yet, Sm is nonlocal:

Consider Einstein’s boxes at a time t after applying detectors on both
sides. The possible outcomes are 01 and 10. The wave function ψ = ψt

of the universe is
ψ = ψ01 + ψ10 ,

and correspondingly,
m = m01 + m10 .

Thus the world in which Alice’s result is 1 is the same world as the one in
which Bob’s result is 0—a fact created in a nonlocal way.
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Sm is nonlocal (2)

The m function alone, while revealing that there are two worlds in A
and two worlds in B, does not encode the information conveying
which world in A is the same as which world in B. That is, the
pairing of worlds cannot be read off from m(t, ·) even though it is an
objective fact of Sm at time t, defined by means of the wave
function ψt .

Thus, the fact that Alice cannot influence m in B does not mean
locality.

One should suspect that Sm is nonlocal already when noticing that
Sm involves a nonlocal object ψ and cannot (in any obvious way) be
formulated without mentioning such an object.
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Sm is nonlocal (3)

Moreover, even though Alice cannot influence the PO in B, she can
influence other physical facts pertaining to B.

Consider a Bell experiment (with 2 electrons starting in the singlet state)
in which Alice chooses either the x or the z direction for her magnet,
while Bob always chooses the z direction. Suppose that at time t (in a
certain Lorentz frame), Alice’s detector has clicked but Bob’s has not,
although Bob’s particle has already passed Bob’s magnet. One finds that,
in the region of Bob’s particle,

2

Alice chooses z Alice chooses x

+

m    +    m  =
1 2

+

m     +    m  =
1

While m(x) for x ∈ B is unaffected by Alice’s choice, each m`(x) is
affected.
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Bohmian mechanics in relativistic space-time
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Bohmian mechanics in relativistic space-time

If a preferred foliation (= slicing) of
space-time into spacelike
hypersurfaces (“time foliation” F)
is permitted, then there is a simple,
convincing analog of Bohmian
mechanics, BMF . [Dürr et al. 1999]

Without a time foliation, no version
of Bohmian mechanics is known
that would make predictions
anywhere near quantum mechanics.
(And I have no hope that such a
version can be found in the future.)
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What does it mean for a theory to be relativistic?

Maybe there is no single property of a theory that can be regarded as
“being relativistic.” Rather, there are several relevant properties:

1 Lorentz invariance. Any Lorentz transform of any solution is
another solution.

Can be made true trivially (e.g., for non-rel. theory) without
changing predictions. Thus, necessary but not sufficient for
anybody’s notion of being relativistic.

2 Commutation. Field operators [φ(x), φ(y)] = 0 for spacelike
separated x , y .

Easy to satisfy, seems not sufficient for being relativistic.

3 No signaling faster than light. Necessary but not sufficient.

4 Locality à la EPR and Bell. Violated in nature.

5 No additional structure. Don’t introduce F , use only gµν and ψ.

It seems possible to define foliations from gµν and/or ψ.

6 Microscopic parameter independence. If regions A,B are
spacelike separated, then P(POA|ΦA,ΦB , λ) = P(POA|ΦA, λ) for
external fields Φ and hidden variables λ.

True in relativistic GRWf and GRWm, false in BMF .
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Perhaps, the semantic question what we should mean by “relativistic” is
irrelevant. The possibility seems worth considering that our universe has
a time foliation.

Simplest choice of time foliation F

Drawing: R. Penrose

Let F be the level sets of the function
T : space-time→ R ,
T (x) = timelike-distance(x , big bang).

E.g., T (here-now) = 13.7 billion years

Alternatively, F might be defined in terms of the quantum state vector
ψ, F = F(ψ) [Dürr, Goldstein, Norsen, Struyve, Zangh̀ı 2014]

Or, F might be determined by an evolution law (possibly involving ψ)
from an initial time leaf.
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Bohmian mechanics for a single Dirac particle

No time foliation needed in this case.

Dirac equation:

i~γµ∂µψ = mψ or i~
∂ψ

∂t
= −i~α · ∇ψ + mβψ

Equation of motion:

dXµ

ds
∝ ψ(X ν(s)) γµ ψ(X ν(s))

or, equivalently,
dX
dt

=
ψ∗αψ

ψ∗ψ
(X , t) =

j
ρ

(X , t)

world lines = integral curves of current 4-vector field jµ = ψγµψ
world lines are timelike or lightlike at every point

|ψ|2 is conserved in every Lorentz frame.
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BMF [Dürr et al. 1999]

Consider N particles. Suppose that,
for every Σ ∈ F , we have ψΣ on ΣN .
Q(Σ) = (Q1∩Σ, . . . ,QN ∩Σ) = con-
figuration on Σ
Equation of motion:

dQµ
k

dτ
= expression

[
ψ
(
Q(Σ)

)]
Example for N Dirac particles

ψΣ : ΣN → (C4)⊗N . Equation of motion:

dQµi

i (s)

dτ
∝ ψ(Q(Σ))

[
γµ1 ⊗ · · · ⊗ γµN

]
ψ(Q(Σ))

∏
k 6=i

nµk
(Qk ∩ Σ)

with nµ(x) = unit normal vector to Σ at x ∈ Σ.
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Key facts about BMF

Known in the case of N non-interacting Dirac particles, expected to be
true also, say, one day, in full QED:

Equivariance

Suppose initial configuration is |ψ|2-distributed. Then the configuration
of crossing points Q(Σ) = (Q1 ∩ Σ, . . . ,QN ∩ Σ) is |ψΣ|2-distributed (in
the appropriate sense) on every Σ ∈ F .

Predictions

The detected configuration is |ψΣ|2-distributed on every spacelike Σ.
No superluminal signaling. [Lienert and Tumulka 1706.07074]

As a consequence,

F is invisible, i.e., experimental results reveal no information about F .
(Another limitation to knowledge)
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Although it may seem to go against the spirit of relativity, I take
seriously the possibility that our world might have a time foliation.

However, there do exist relativistic realist theories of quantum
mechanics that do not require a time foliation: A relativistic version
[Tumulka 2004] of the GRW theory.

The theory is somewhat more complicated and less natural than
Bohmian mechanics.

The wave function ψΣ on the spacelike hypersurface Σ is random
and evolves according to a stochastic modification of the
Schrödinger equation.
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GRW in relativistic space-time
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Instantaneous collapse

Everybody’s first idea:

If collapse is instantaneous (as opposed to propagating at speed c) then
it must violate relativity.

That problem is easily avoided [Aharonov and Albert 1981]

For every spacelike hypersurface Σ there is a wave fct ψΣ ∈HΣ.

E.g., HΣ = H ⊗N
1 , H1 = L2

(
Σ,C4, 〈φ|ψ〉 =

∫
Σ
d3x φ(x)nµ(x)γµψ(x)

)
.
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Instantaneous collapse

Everybody’s first idea:

If collapse is instantaneous (as opposed to propagating at speed c) then
it must violate relativity.

That problem is easily avoided [Aharonov and Albert 1981]

For every spacelike hypersurface Σ there is a wave fct ψΣ ∈HΣ.

E.g., HΣ = H ⊗N
1 , H1 = L2

(
Σ,C4, 〈φ|ψ〉 =

∫
Σ
d3x φ(x)nµ(x)γµψ(x)

)
.
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Flash ontology

Flashes in 2+1-dim space-time forming a binary star
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Relativistic GRW model

[Tumulka quant-ph/0406094, quant-ph/0602208, 0711.0035, 2002.00482]

fixed number N of distinguishable particles

works also in curved space-time, described here in Minkowski
space-time M = R4

works also for interacting particles [2002.00482], described here for
non-interacting ones

works also with matter density ontology [Bedingham et al. 1111.1425],
described here with flash ontology

unitary part of evolution is regarded as given: e.g., free Dirac [arising
from L2(R3,C4)]

with every spacelike surface Σ there is associated a Hilbert space HΣ

unitary evolution UΣ′

Σ
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The rGRW process for N = 1

Given: initial wave fct ψ0 on some 3-surface Σ0, seed flash X0 ∈M

space

time HX0 (T )

T
X0

Randomly select next flash X ∈M:

Randomly select waiting time T ∼ Exp(λ),
T = proper time between X0 and X ,
i.e., X ∈ HX0 (T )

Evolve ψ0 → ψΣ from Σ0 to Σ = HX0 (T ).

Randomly select X ∈ Σ with probability
density |ψΣ|2 ∗ g , where ∗ = convolution and
g the Gaussian on Σ

g(z) = N exp
(
−distΣ(x , z)2

2σ2

)
,

distΣ(x , z) = spacelike dist. from x to z along
Σ, normalization

∫
Σ
d3x gx(z) = 1.
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The rGRW process for N = 1

Repeat with

ψ0 replaced by
gXψΣ

‖gXψΣ‖
and X0 by X .
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The rGRW process for N = 1

It follows from the definition that the joint distribution of the first n
flashes is of the form

P
(

(X1, . . . ,Xn) ∈ B
)

= 〈ψ0|G1n(B)|ψ0〉, B ⊆ (R4)n

where ψ0 ∈ L2(Σ0), and G1n is a positive-operator-valued measure
(POVM). Set G1 := limn→∞ G1n.

The rGRW process for N > 1

Let the joint probability distribution of the flashes for particles 1 . . .N be

P
(

(X11,X12, . . .) ∈ B
)

= 〈ψ0|GN(B)|ψ0〉

where ψ0 ∈ L2(Σ0)⊗N , and GN is the product POVM defined by

GN(B1 × · · · × BN) = G1(B1)⊗ · · · ⊗ G1(BN).
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ψΣ

We have defined the joint distribution of the flashes.

random wave function ψΣ:

If the flashes Xik up to Σ are given, ψΣ is determined by the initial
ψ0 ∈HΣ0 : Roughly speaking, collapse ψ at every flash and evolve ψ
unitarily in-between.

f

i

time

space

Σ

Σ
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No signaling

The distribution of the flashes of particle 1 does not depend on the
external field Aµ applied to other particles at spacelike separation. It does
not depend either on the external field Aµ applied to particle 1 at
spacelike separation, except in a neighborhood of size 10−7 m and 10−8 s.

Nonlocality

The flash process F is nonlocal, i.e., if the space-time regions A and B
are spacelike separated then, in general, flashes in A are not conditionally
independent of those in B, given their common past:

P
(
F∩A

∣∣∣F∩B,F∩past(A)∩past(B)
)
6= P

(
F∩A

∣∣∣F∩past(A)∩past(B)
)
.

But there is no fact about who influences whom.

Relativistic GRWf illustrates that a theory can be relativistic and
nonlocal.
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A few remarks on quantum field theory
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Extending Bohmian mechanics to quantum field theory

Two approaches:

1 “Field ontology”:
Instead of an actual configuration (Q1, . . . ,QN) of particles,
postulate an actual field configuration Φ(x); the quantum state is a
wave functional Ψ[φ] on the ∞-dimensional space of all field
configurations φ = φ(x). Equation of motion

∂Φ

∂t
= Im

[ 1

Ψ[Φ]

δΨ

δφ

∣∣∣
φ=Φ

]
2 “Particle ontology”:

Trajectories for photons, electrons, positrons, etc.
Particles can be created and annihilated.
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Particle creation in Bohmian mechanics

[Bell 1986, Dürr, Goldstein, Tumulka, Zangh̀ı quant-ph/0208072]

Natural extension of Bohmian
mechanics to particle creation:

Ψ ∈ Fock space =
∞⊕

N=0

HN ,

configuration space of a variable
number of particles

=
∞⋃

N=0

R3N

jumps (e.g., n-sector → (n + 1)-
sector) occur in a stochastic way,
with rates governed by a further
equation of the theory.

t

x

(a) (b)

t

x

Q(t !)

Q(t +)2

Q(t !)

1Q(t +)

2

1

(c) (d)

(a) (b)
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Jump rate formula

Jump rate from q′ to q ∈ Q:

σψ(q′ → q) =
max

{
0, 2

~ Im 〈ψ|P(q)HIP(q′)|ψ〉
}

〈ψ|P(q′)ψ〉

here, HI = interaction Hamiltonian, H = H0 + HI , and

P(q) the configuration operators

e.g., P(q) = |q〉〈q|
or generally, a POVM (positive-operator-valued measure) on
configuration space

Between jumps, Bohm’s equation of motion applies.

|ψ|2 distribution 〈ψ|P(q)|ψ〉 holds at every time t.

Essentially, if you have a Hilbert space H , a state vector ψ ∈H , a
Hamiltonian H, a configuration space Q, and configuration operators
P(q), then we know how to set up Bohmian trajectories Q(t).
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Thank you for your attention
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