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In classical mechanics: 2 definitions of entropy

Phase space Γ, e.g., Γ = R6N = {(q1, v 1, . . . ,qN , vN)}
(symmetrized) volume measure dx = N!−1d3q1 d

3v 1 · · · d3qN d3vN

Gibbs entropy

SG(ρ) = −k
∫

Γ
dx ρ(x) log ρ(x)

for ρ a probability density on Γ.

Boltzmann entropy

SB(X ) = k log vol Γ(X )

for X a phase point in Γ, Γ(X ) = set of phase points that “look
macroscopically the same” as X .

Roderich Tumulka (Tübingen) Boltzmann entropy in quantum mechanics



Classical mechanics: partition of phase space

Γ

ν

eq

Γ

• Γ = ∪νΓν “macro sets”

• Γν = set of phase points that look
like macro state ν

• Set Γ(X ) = Γν 3 X , so

SB(X ) = SB(ν) = k log vol Γν

• Usually, in every energy shell
Γmc = {x : E − ∆E < H(x) ≤ E}
there is one macro state Γν = Γeq

corresponding to thermal equilibrium
and taking up > 99.99% of volume.

SB(eq) ≈ k log vol Γmc = SG(ρmc)

• Generally, SB ≈ SG in local
thermal equilibrium (including non-
equilibrium stationary states).
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Gibbs vs. Boltzmann entropy

But outside local thermal equilibrium, SB is the more fundamental
definition than SG:

Every system has an X but not a ρ.

In thermal equil., ρ should mean a Gibbs ensemble. But outside?

ρ = an observer’s knowledge or belief? (subjective)

ρ = preparation procedure?

ρ(x) ∝ 1Γ(X )(x)? (An ideal observer’s knowledge?)
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Against subjective entropy

Usually, we explain the fact that heat never flows from the cooler to
the hotter by saying that this would decrease entropy. This
explanation would not get off the ground if entropy were subjective:

In the absence of observers, does heat flow from the cooler to the
hotter?

In the days before humans existed, did heat flow from the cooler to
the hotter?

If not, why would observers be relevant at all to the explanation of
the phenomenon?

As with explanation, so with prediction: Can we predict that heat
will flow from the hotter to the cooler also in the absence of
observers?

If we don’t know whether a pot is hot or cold, then

SG(our knowledge) = 1
2S(hot) + 1

2S(cold) + k log 2.

But in reality, the thermodynamic entropy is either S = S(hot) or
S = S(cold). So S 6= SG(ρsubjective).
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Against SG(ρpreparation)

Again: Prepare a pot with chance 1
2 of being hot and chance 1

2 of
being cold. Then

SG(ρpreparation) = 1
2S(hot) + 1

2S(cold) + k log 2.

But in reality, the thermodynamic entropy is either S = S(hot) or
S = S(cold). So S 6= SG(ρpreparation).

SG(ρ) quantifies the width of ρ but is independent of the physical
properties of the phase points x it gives weight to.
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Against reference to an ideal observer

Ex: Given a system with phase point X ∈ Γν , an ideal observer
knows only the macro state ν, so ρ(x) ∝ 1Γν

(x).

But then SG(ρ) = SB(X ), and there is no need to mention
observers, or knowledge, or ρ.

One could always use SB(X ) and add a narrative about beliefs of
rational observers; but it would be irrelevant if observers’ knowledge
is irrelevant to which way heat flows.
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Entropy increase, classically

Hamiltonian flow Φt : Γ→ Γ, Xt = Φt(X ).

Gibbs entropy does not increase: SG(ρt) = SG(ρ0) for ρt = ρ ◦ Φ−t

Boltzmann entropy usually does: Phase point typically moves to
larger and larger macro sets Γν . Drawing: R. Penrose

Ex: Usually, Γν is bigger than all smaller macro sets together,
vol Γν � vol

⋃
ν′<ν Γν′ . Then, by Liouville’s theorem,

vol{X ∈ Γν : SB(Xt) < SB(X )} � vol Γν
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Entropy increases in both time directions

Given ν 6= eq, for most X ∈ Γν , SB(Xt) increases in both time directions
until it reaches the maximal value SB(eq) (except possibly for entropy
valleys that are infrequent, shallow, and short-lived). Once Xt reaches

Γeq, it stays in there for ∼ 101010

years (except possibly for infrequent,
shallow, and short-lived entropy valleys). In the long run, SB(Xt) goes
down again (due to Poincaré recurrence).

tS(0)

S(eq)

Theorem [Lanford 1976, Boltzmann 1872]

For a dilute hard sphere gas and large particle number, entropy increases
in both time directions for most X ∈ Γν for at least a short time.

t

S

0
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So why does entropy increase in 1 direction only?

Because of a law of nature constraining the initial conditions of the
universe:

Past hypothesis

The phase point of the universe at the initial time T0 of the universe (the
big bang) is typical in a certain macro set Γν0 ; ν0 has very low entropy.

[Feynman 1965; Penrose 1979; Albert 2000]

(“typical” = behaves like most points in that set)

(Maybe it is helpful to avoid the word “probability.”)

(Deeper explanations of the past hypothesis have been proposed by [Carroll et al.

2004; Barbour et al. 2013])
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My reaction to Tim’s talk
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Tim’s boundary entropy S∂

TRUE: For reasonable entropy curves t 7→ S(t) to come out, it is
necessary that the macro sets bordering on very small macro sets are
small. It is equally necessary for SB = k logV and S∂ = k logB(V ).
And it is actually the case for reasonable partitions of realistic
examples.

Claim of Tim’s: For typical trajectories, S∂ is higher than now in the
future and lower in the past. (A past hypothesis is not needed.)

That seems true in Hades as Tim described it.

Is it true in stat mech phase space?

I have 2 reservations:
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Reservation 1

velocity reversal mapping
R : Γ→ Γ,

R(q1, v 1, . . . ,qN , vN) :=
(q1,−v 1, . . . ,qN ,−vN)

It seems reasonable that RΓν = Γν′

for some ν′.

Since R is volume-preserving and
surface-area-preserving,
SB(RX ) = SB(X ) and
S∂(RX ) = S∂(X ).

(RX )t = R(X−t), S∂((RX )t) = S∂(X−t).

Thus, there are as many trajectories with decreasing t 7→ S∂(t) as
with increasing.

With a past hypothesis, this is not a problem. But without a past
hypothesis, it conflicts with the claim that typical trajectories have
increasing S∂ .
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Reservation 2

Lanford’s 1975 theorem on the validity of the Boltzmann eq,
together with Boltzmann’s H theorem, shows that for most X ∈ Γν ,
ν 6= eq, SB increases in both time directions (for at least a short
time).

Tim made it plausible that usually S∂ ≈ SB.

Thus, it is plausible that for most X ∈ Γν , S∂ increases in both time
directions, contrary to the claim that typical trajectories have
increasing S∂ .

In sum, I doubt that the past hypothesis can be avoided.
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The quantum case
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Entropy in quantum mechanics

Hilbert space H , unit sphere S(H ) = {ψ ∈H : ‖ψ‖ = 1}
Hamiltonian Ĥ =

∑
α Eα|φα〉〈φα|

micro-canonical subspace

Hmc = ran 1(E−∆E ,E ](Ĥ) = span{φα : E −∆E < Eα ≤ E}

Quantum analog of Gibbs entropy

von Neumann entropy SvN = −k tr(ρ̂ log ρ̂), ρ̂ = density matrix

Does not increase under unitary evolution. Like Gibbs entropy, applicable
in thermal equil. (and non-eq. stationary states) but not always outside.

Quantum analog of Boltzmann entropy

Orthogonal decomposition H = ⊕νHν into “macro spaces” Hν

(replaces partition Γ = ∪νΓν)
quantum Boltzmann entropy SqB(ν) = k log dim Hν

[Einstein 1914; von Neumann 1929; Griffiths 1994;

Maes et al. 2006; Lebowitz 2008; Goldstein et al. 2010]
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Properties of SqB

dim Heq/ dim Hmc > 0.9999 thermal equilibrium space

So within Hmc, SqB(eq) = maxν SqB(ν).

SqB(eq) ≈ k log dim Hmc = SvN(ρ̂mc), which is known to yield the
correct entropy value in thermal equilibrium

So again, SqB ≈ SvN in thermal equilibrium

SqB is an extensive/additive quantity: 2 systems S1,S2, negligible
interaction, H = HS1∪S2 = HS1 ⊗HS2 , ν = (ν1, ν2) with
Hν = Hν1 ⊗Hν2 . Then

SqB(ν) = SqB(ν1) + SqB(ν2) .
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Thermalization of closed quantum systems

Some references [Deutsch 1991; Tasaki 1998; Gemmer et al. 2004; Popescu et al.
2005; Goldstein et al. 2005; Reimann 2008; Rigol et al. 2008];

key words “canonical typicality” and “eigenstate thermalization hypothesis” (ETH).

An individual, closed, macroscopic quantum system S in a pure
state ψt that evolves unitarily will often behave as if in thermal
equilibrium: relevant observables yield their thermal equilibrium
values up to small deviations with probabilities close to 1.
These works support the idea that the approach to thermal
equilibrium need not have anything to do with an observer’s
ignorance. S is always in a pure state, so SvN = 0 at all times.
An “individualist” version of approach to thermal equilibrium:

Theorem [Goldstein et al. 2010]

Consider dim Hmc � 1, dim Heq/ dim Hmc ≈ 1, either H with random
eigenbasis or Hν ’s in random directions. Then ∀ψ ∀ε > 0 ∃t > 0 :
ψt ∈ ε-neighborhood of Heq (in fact, for most t in the long run).

In two flavors: “macroscopic” thermal equilibrium (MATE) ψ ∈Heq

and “microscopic” thermal equilibrium (MITE) trbath |ψ〉〈ψ| ≈ ρ̂can.
[Goldstein et al. 2015]
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Quantum past hypothesis

The wave function of the universe at the initial time T0 of the universe
(the big bang) is typical in the unit sphere of a certain macro space Hν0 ;
SqB(ν0) is very low.
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Increase of quantum Boltzmann entropy (1)

Just as the classical macro sets Γν have vastly different volumes, the
quantum macro spaces Hν have vastly different dimensions, and as
phase space volume is conserved classically, dimensions of subspaces are
conserved under unitary evolution.

It follows, e.g., that if macro states ν follow an autonomous,
deterministic evolution law ν 7→ νt , then SqB increases:

if e−i ĤtHν ⊆Hν′ , then SqB(ν′) ≥ SqB(ν).
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Increase of quantum Boltzmann entropy (2)

Most ψ ∈H don’t lie in any particular Hν but are a superposition
of contributions from different Hν .

Different from the classical case, where every x lies in some Γν .

So, most ψ don’t have an entropy value. They are in a superposition
of different entropy values.

It is natural to define the entropy operator

Ŝ =
∑
ν

SqB(ν)Pν

with Pν the projection to Hν .

What could it even mean to say that log dim Hν increases with time?

I will present some options.
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Right-moving distributions

Every ψ ∈ S(H ) defines a distribution weight pν = ‖Pνψ‖2 for each
Hν .

Order macro states by their sizes: ν < ν′ ⇔ dim Hν < dim Hν′

Def: A distribution p̃ lies to the right of p (p � p̃) :⇔
∀ν0 :

∑
ν≥ν0

pν ≤
∑
ν≥ν0

p̃ν .

Def: A family p(t)0≤t≤T is right-moving⇔ ∀t1 ≤ t2 : p(t1) � p(t2).

Conjecture

In realistic cases and for most ψ ∈ S(Hν0 ), p(t) = ‖Pνψt‖2 is an
(approximately) right-moving family up to the time T when ψT is mostly
concentrated in Heq.
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Conjecture:
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Macroscopic Superpositions

For a macroscopic superposition ψ (e.g., Schrödinger’s cat), most of
us think that only one of the macroscopically different contributions
corresponds to reality.

Here, the foundations of stat mech meet the foundations of
quantum mech.

Copenhagen: unclear

Everett: many worlds

GRW: spontaneous collapse

Bohm: particle positions AND wave function

Doesn’t that define a history t 7→ SqB(t)? Is it increasing?
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In Bohmian mechanics,

there is a fact about whether Schrödinger’s cat is alive:
ψ = 2−1/2

(
|dead〉+ |alive〉

)
but Q = Qdead or Q = Qalive. Q ∼ |ψ|2

S(Q, ψ) = Sν ⇔ Q ∈ support(Pνψ) .

Q does not always select a unique macro state ν (and thus a unique
entropy SqB(ν)), but it does in practically relevant cases.

Let (Qt , ψt) define a νt ; then t 7→ νt is a stochastic jump process whose
Markovization should be close to

Bell’s process [Bell 1986]

Given
∑

x Px = I , define the Markov jump process Xt to have initial
distribution Prob(X0 = x) = 〈ψ0|Px |ψ0〉 and jump rates

σt(x → x ′) =
2 Im+〈ψt |Px′HPx |ψt〉

〈ψt |Px |ψt〉

Then Prob(Xt = x) = 〈ψt |Px |ψt〉 for all t.
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Set
Rνν′(t) = −iPν0e

iHt(PνHPν′ − Pν′HPν)e−iHtPν0 ,

which is a self-adjoint operator.

Proposition

Suppose that whenever ν < ν′ and t ∈ [0,T ], the sum of positive
eigenvalues of Rνν′(t) far exceeds the absolute sum of negative ones.
Then, for most ψ ∈ S(Hν0 ) and with probability near 1, the Bell process
for νt has increasing SqB(νt) (except possibly for infrequent, shallow, and
short-lived entropy valleys).

The hypothesis may seem plausible if H is expected to have far more
significant transition elements ν → ν′ than ν′ → ν. It would be of
interest to verify this hypothesis for some models.

Corollary

In that case, p(t) = ‖Pνψt‖2 is (approximately) right-moving.

Consequence

In that case, SqB predominantly increases along the Bohmian history.
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Thank you for your attention
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