Canonical Typicality For Other Ensembles Than Micro-Canonical

Roderich Tumulka

31 August 2023

http://arxiv.org/abs/2307.15624

Advertisement

Lecture Notes in Physics

Roderich Tumulka

Foundations of Quantum Mechanics

🖄 Springer

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

Overview

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

メロト メロト メヨト メヨト

E 99€

Overview 1: canonical typicality

 $\mathbb{S}(\mathscr{H}):=ig\{\psi\in\mathscr{H}:\|\psi\|=1ig\}$ unit sphere

"Micro-canonical ensemble" in QM

Choose micro-canonical energy interval $[E - \Delta E, E]$. The corresponding spectral subspace of $H = \sum_{n} E_n |n\rangle \langle n|$ is

$$\mathscr{H}_{\mathrm{mc}} = \mathsf{span}ig\{ | \textit{n}
angle : \textit{E}_{\textit{n}} \in [\textit{E} - \Delta \textit{E}, \textit{E}] ig\}$$

"micro-canonical ensemble" = $u_{
m mc}$ = uniform prob. distrib. on $\mathbb{S}(\mathscr{H}_{
m mc})$

Reduced density matrix

Systems $a, b, S = a \cup b$, $\mathscr{H}_S = \mathscr{H}_a \otimes \mathscr{H}_b$, b large. $\rho_a^{\psi} := \operatorname{tr}_b |\psi\rangle\langle\psi|$.

Canonical typicality [\approx 2006], roughly speaking

Suppose $H \approx H_a \otimes I_b + I_a \otimes H_b$.

Then "most ψ " have $\rho_a^\psi \approx \rho_{\rm can} := Z^{-1} e^{-\beta H_a}$ with suitable β .

イロト イポト イラト イラト

GAP measure [2006]

Given a density matrix ρ , GAP(ρ) is the most spread-out measure on $\mathbb{S}(\mathscr{H})$ with density matrix ρ (def. later). For $\rho \propto P_{\mathscr{H}}$, GAP(ρ) = $u_{\mathbb{S}(\mathscr{H})}$.

"Canonical ensemble" in QM [2006]

 $GAP(\rho_{can})$ is the distribution of wave functions in thermal equilibrium with a heat bath at temperature $1/\beta$.

Result of ours [2023]

Canonical typicality holds not only for the micro-canonical but also for the canonical ensemble. More generally, also for GAP measures but not not in general for other measures.

周 ト イ ヨ ト イ ヨ ト

Overview 3: conditional wave function

Concept of conditional wave function [Dürr, Goldstein, Zanghì 1992]

In Bohmian mechanics, $\psi_a(x) := \mathcal{N} \Psi_S(x, Y)$. For a given ONB $B = (\varphi_j)_j$ of \mathscr{H}_b , $\psi_a := \mathcal{N} \langle \varphi_J | \Psi_S \rangle_b$ with Born-distributed *J*, i.e., $\mathbb{P}(J = j) = \|\langle \varphi_J | \Psi_S \rangle_b \|_a^2$. The distribution of ψ_a will be denoted by $\text{Born}_a^{\Psi, B}$.

As if quantum measurement with eigenbasis *B* and outcome *J*, which leads to collapsed $\psi_a \otimes \varphi_J$. A basic fact: $\mathbb{E} |\psi_a\rangle \langle \psi_a | = \rho_a^{\Psi}$.

Distribution of ψ_a in thermal equil. [Goldstein, Lebowitz, Tumulka, Zanghì 2006]

For $u_{\rm mc}$ -most Ψ and u_{ONB} -most B, $\operatorname{Born}_{a}^{\Psi,B} \approx \operatorname{GAP}(\rho_{\rm can})$.

New result

If d_b is large and ρ has small eigenvalues, then for $GAP(\rho)$ -most Ψ and u_{ONB} -most B, $Born_a^{\Psi,b} \approx GAP(tr_b \rho)$.

< 同 > < 三 > < 三 >

Overview 4: dynamical typicality

Dynamical typicality [Bartsch, Gemmer 2009; Müller, Gross, Eisert 2011]

Let A, B be observables on \mathscr{H} with large dim \mathscr{H} , not too large eigenvalues, and $\alpha \in \mathbb{R}$. For most $\psi \in \mathbb{S}(\mathscr{H})$ with $\langle \psi | A | \psi \rangle = \alpha$, $\langle \psi | B | \psi \rangle$ is nearly the same.

Macro spaces [von Neumann 1929]

Macro states ν correspond to high-dimensional, mutually orthogonal subspaces \mathscr{H}_{ν} such that $\mathscr{H} = \bigoplus_{\nu} \mathscr{H}_{\nu}$. They are the joint eigenspaces of the macro observables.

Variant of dynamical typicality [Balz, Gemmer et al. 2019; Teufel, Tumulka, Vogel 2022]

For u_{ν_0} -most $\psi_0 \in \mathbb{S}(\mathscr{H}_{\nu_0})$, $t \mapsto \|P_{\nu}\psi_t\|^2$ is nearly the same.

New result

If b is large and ρ has small eigenvalues, then for $GAP(\rho)$ -most ψ and most $t \in [0, T]$, $\rho_a^{\psi_t} \approx \operatorname{tr}_b \rho_t$.

< (日) × < 三 × <

Macroscopic thermal equilibrium (MATE)

A quantum system in state $\psi \in \mathscr{H}$ is in MATE when $\|P_{\nu}\psi\|^2 \geq 1-\varepsilon$ and ν is a thermal equilibrium state. (Usually, there is 1 such $\nu = \nu_E^{\rm eq}$ in each $\mathscr{H}_{\rm mc}$, and $\dim \mathscr{H}_{\nu_E^{\rm eq}}/\dim \mathscr{H}_{\rm mc} \approx 1$. Most $\psi \in \mathbb{S}(\mathscr{H}_{\rm mc})$ are in MATE.)

For generic macroscopic systems, most ψ have a stronger property:

Microscopic thermal equilibrium (MITE)

A quantum system in state $\psi \in \mathscr{H}$ is in MITE when all micro observables (i.e., those referring only to a small subsystem *a*) have a probability distribution in ψ that coincides with their thermal probability distribution. (That is equivalent to $\rho_a^{\psi} \approx \rho_{\mathrm{can.}}$)

MITE arises from canonical typicality.

周 ト イ ヨ ト イ ヨ ト

Some Orientation

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

イロト イヨト イヨト イヨト

2

Let \mathscr{H}_R be a high-dimensional subspace of $\mathscr{H}_S = \mathscr{H}_a \otimes \mathscr{H}_b$, and b sufficiently large. Let $\rho_R = P_R/d_R$ (the normalized projection to \mathscr{H}_R) with $d_R := \dim \mathscr{H}_R$. Then for most $\psi \in \mathbb{S}(\mathscr{H}_R)$,

 $\rho_{a}^{\psi} \approx \operatorname{tr}_{b} \rho_{R},$

where "most ψ " refers to the uniform distribution u_R over $\mathbb{S}(\mathscr{H}_R)$.

This phenomenon was discovered by several groups independently [Lloyd 1988; Gemmer, Mahler 2003; Goldstein, Lebowitz, Tumulka, Zanghì 2006; Popescu, Short, Winter 2006] preliminary [Schrödinger 1952]

If $\mathscr{H}_R = \mathscr{H}_{\mathrm{mc}}$, *b* is large, and $H \approx H_a \otimes I_b + I_a \otimes H_b$, then $\operatorname{tr}_b \rho_{\mathrm{mc}} \approx \rho_{\mathrm{can}}$.

Motivation

- Measures can serve as probability measures (for actual ensembles) or typicality measures (for hypothetical ensembles representing "most" cases). Theorems of measure theory apply to both.
- $\bullet\,$ In an actual ensemble, the distribution of ψ might not be uniform. In thermal equilibrium, it will be GAP.
- In a hypothetical ensemble, still relevant: $u_{\rm mc}$ corresponds to cutting off energy coefficients of ψ outside $[E \Delta E, E]$ abruptly. The intuitive idea that canonical typicality applies to "any old" ψ is confirmed by our results, just with corrections (i.e., deviations of tr_b ρ from tr_b $\rho_{\rm mc}$).
- Robustness towards changes in the underlying measure.
- Equivalence of ensembles: we can start from the "micro-canonical ensemble" $u_{\rm mc}$ or the "canonical ensemble" GAP($\rho_{\rm can}$) of wave functions.
- thermodynamic limit: with regions $A_1 \subset A_2 \subset \ldots \subset \mathbb{R}^3$, we want (conditional) wave functions $\psi_{A_1}, \psi_{A_2}, \ldots$ such that each is the conditional wave function of the next, and each is GAP distributed.
- Our results also illustrate that GAP measures are natural.

Not every measure does what $GAP(\rho)$ does

Canonical typicality is not true for all measures.

Counter-example

Let $\rho = \sum_{n} p_n |n\rangle \langle n|$ and

$$u = \sum_{n=1}^{D} p_n \,\delta_{|n\rangle}$$

(the narrowest, most concentrated measure with density matrix ρ). $\psi \sim \mu$ is a random eigenvector. Suppose $|n\rangle = |\ell\rangle_a \otimes |m\rangle_b$; then $\rho_a^{|n\rangle} = \operatorname{tr}_b |n\rangle \langle n| = |\ell\rangle_a \langle \ell|$, so $\rho_a^{|n\rangle}$ is always pure and thus far away from $\operatorname{tr}_b \rho = \sum_{\ell,m} p_{\ell m} |\ell\rangle_a \langle \ell|$ (highly mixed).

(If instead of a product basis, $\{|n\rangle\}_n$ were purely random, then $\rho_a^{|n\rangle} \approx d_a^{-1}I_a$ and thus also $\operatorname{tr}_b \rho$ is close to $d_a^{-1}I_a$, so $\rho_a^{\psi} \approx \operatorname{tr}_b \rho$ for μ -most ψ .)

Previously Known Bounds

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Theorem 1 [Sugita 2007, Goldstein et al. 2017]

Let \mathscr{H}_a and \mathscr{H}_b be Hilbert spaces of respective dimensions $d_a, d_b \in \mathbb{N}$, $\mathscr{H} = \mathscr{H}_a \otimes \mathscr{H}_b$, and \mathscr{H}_R any subspace of \mathscr{H} of dimension d_R . Then for every $\varepsilon > 0$,

$$u_{R}\left\{\psi\in\mathbb{S}(\mathscr{H}_{R}):\left\|\rho_{a}^{\psi}-\mathrm{tr}_{b}\,\rho_{R}\right\|_{\mathrm{tr}}<\varepsilon\right\}\geq1-\frac{d_{a}^{4}}{\varepsilon^{2}d_{R}}$$

trace norm $||A||_{tr} = tr \sqrt{A^{\dagger}A}$ = $\sum_{n} |a_{n}|$ for $A = \sum_{n} a_{n} |n\rangle \langle n|$. Theorem 2 [Popescu, Short, Winter 2006]

With the notation and hypotheses as in Theorem 1, for every $\varepsilon > 0$,

$$u_{R}\left\{\psi\in\mathbb{S}(\mathscr{H}_{R}):\left\|\rho_{a}-\mathrm{tr}_{b}\,\rho_{R}\right\|_{\mathrm{tr}}<\varepsilon\right\}\geq1-4\exp\Bigl(-\frac{d_{R}\varepsilon^{2}}{18\pi^{3}}\Bigr).$$

Lévy's Lemma (Concentration of Measure)

Theorem 3 (Lévy's lemma) [P. Lévy 1922, V. Milman 1986]

Let \mathscr{H} be a Hilbert space with $D := \dim \mathscr{H} < \infty$, let $f : \mathbb{S}(\mathscr{H}) \to \mathbb{R}$ be a function with Lipschitz constant η , and let $\varepsilon > 0$. Then

$$u\Big\{\psi\in\mathbb{S}(\mathscr{H}): \big|f(\psi)-u(f)\big|$$

where $\tilde{C}=2/9\pi^3$ and

$$u(f) := \int_{\mathbb{S}(\mathscr{H})} f(\psi)u(d\psi).$$

"On a high-dimensional sphere, functions with high regularity are nearly constant."

 $\eta = \sup |\nabla f|$

GAP Measures

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

イロト イヨト イヨト イヨト

2

Measure and density matrix

• For any probability measure μ on $\mathbb{S}(\mathscr{H})$, its density matrix is

$$ho_{\mu} = \int\limits_{\mathbb{S}(\mathscr{H})} \mu(d\psi) \ket{\psi} ra{\psi}.$$

Then for any experiment with random outcome Z,

$$\mathbb{P}(Z = z) = \mathbb{E}_{\psi \sim \mu} \langle \psi | E(z) | \psi \rangle = \operatorname{tr}(\rho_{\mu} E(z))$$

for the appropriate POVM $E(\cdot)$.

- If μ has mean zero, then ρ_{μ} is the covariance matrix of μ .
- Many-to-one: $\rho_{\mu} = \rho_{\mu'} \not\Rightarrow \mu = \mu'$
- For $\mu = \text{GAP}(\rho)$ we have that $\rho_{\mu} = \rho$.

AUSSIAN

DJUSTED

ROJECTED

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

э

AUSSIAN: Start with $G(\rho) = \text{Gaussian measure on } \mathscr{H} \text{ with covariance } \rho,$ i.e., $\mathbb{E}_{G(\rho)}\langle \phi | \psi \rangle \langle \psi | \chi \rangle = \langle \phi | \rho | \chi \rangle \quad \forall \phi, \chi \in \mathscr{H}.$

Construction

If $\rho = \sum_{n} p_n |n\rangle \langle n|$ spectral decomposition then let Re Z_n , Im Z_n be independent Gaussian random variables with mean 0 and variance $p_n/2$; set $\psi = \sum_{n} Z_n |n\rangle$.

$$\underline{\mathsf{Ex}}\ \mathscr{H} = \mathbb{C}^k \colon \ \frac{d \mathsf{G}(\rho)}{d \lambda}(\psi) = \frac{1}{\pi^k \det \rho} e^{-\langle \psi | \rho^{-1} | \psi \rangle}$$

AUSSIAN: Start with $G(\rho) =$ Gaussian measure on $\mathscr H$ with covariance ρ

DJUSTED: To obtain the measure $GA(\rho)$ on \mathscr{H} , multiply by a density function $\psi \mapsto ||\psi||^2$: $GA(\rho)(d\psi) = ||\psi||^2 G(\rho)(d\psi)$

AUSSIAN: Start with $G(\rho) =$ Gaussian measure on $\mathscr H$ with covariance ρ

DJUSTED: To obtain the measure $GA(\rho)$ on \mathscr{H} , multiply by a density function $\psi \mapsto \|\psi\|^2$: $GA(\rho)(d\psi) = \|\psi\|^2 G(\rho)(d\psi)$

ROJECTED to the unit sphere $\mathbb{S}(\mathscr{H})$: $\psi^{GAP} = \frac{\psi^{GA}}{\|\psi^{GA}\|}$ or $GAP(\rho)(B) = GA(\rho)(\mathbb{R}^+B)$ for $B \subseteq \mathbb{S}(\mathscr{H})$.

The adjustment factor compensates the change in covariance due to projection to $\mathbb{S}(\mathcal{H})$, thus $\rho_{GAP(\rho)} = \rho$.

covariant

$$U_* \ GAP(\rho) = GAP(U\rho U^{-1})$$

for every unitary U on \mathscr{H}

 \Rightarrow stationary under every unitary evolution that preserves ρ

hereditary

"If a system has temperature $1/\beta$ then also every subsystem" "GAP of a product density matrix has GAP marginal" If $\Psi \in \mathbb{S}(\mathscr{H}_a \otimes \mathscr{H}_b)$ has distribution $GAP(\rho_a \otimes \rho_b)$ then, for any ONB $\{\varphi_j\}$ of \mathscr{H}_b , the conditional wave function ψ_a has marginal distribution $\int_{\mathbb{S}(\mathscr{H})} GAP(\rho_a \otimes \rho_b)(d\Psi) \operatorname{Born}_a^{\Psi,B} = GAP(\rho_1).$

New Results

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

イロト イヨト イヨト イヨト

2

Generalized Canonical Typicality: Polynomial Bounds

Theorem 4 [Teufel, Tumulka, Vogel 2023]

Suppose $d_a = \dim \mathscr{H}_a < \infty$ and \mathscr{H}_b is separable (i.e., has finite or countable dimension). Let ρ be a density matrix on $\mathscr{H} = \mathscr{H}_a \otimes \mathscr{H}_b$ with $\|\rho\| < 1/4$. Then for every $\varepsilon > 0$,

$$\mathsf{GAP}(\rho)\Big\{\psi\in\mathbb{S}(\mathscr{H}):\left\|\rho_{a}-\mathsf{tr}_{b}\,\rho\right\|_{\mathsf{tr}}<\varepsilon\Big\}\geq1-\frac{28d_{a}^{5}\,\mathsf{tr}\,\rho^{2}}{\varepsilon^{2}}\,.$$

 $\|\rho\| =$ largest eigenvalue; tr $\rho^2 =$ "purity" = average eigenvalue.

For the proof of Theorem 4, we need the following Proposition:

Proposition 5 [Reimann 2008; Teufel, Tumulka, Vogel 2023]

Let ρ be a density matrix on a separable Hilbert space \mathscr{H} with positive eigenvalues such that $\|\rho\| < 1/4$, and let dim $\mathscr{H} \ge 4$. For any bounded operator $A : \mathscr{H} \to \mathscr{H}$,

$$\operatorname{Var}\langle\psi|A|\psi
angle\leq 28\|A\|^2\operatorname{tr}
ho^2$$
 .

・ 回 ト ・ ヨ ト ・ ヨ ト

Theorem 6 [Teufel, Tumulka, Vogel 2023]

Suppose $d_a = \dim \mathscr{H}_a < \infty$ and \mathscr{H}_b is separable. Let ρ be a density matrix on $\mathscr{H} = \mathscr{H}_a \otimes \mathscr{H}_b$. Then for every $\varepsilon > 0$,

$$\mathsf{GAP}(\rho)\Big\{\psi\in\mathbb{S}(\mathscr{H}):\left\|\rho_{a}-\mathsf{tr}_{b}\,\rho\right\|_{\mathsf{tr}}<\varepsilon\Big\}\geq1-6d_{a}^{2}\exp\Bigl(-\frac{\tilde{C}\varepsilon^{2}}{d_{a}^{2}\|\rho\|}\Bigr),$$

where $\tilde{C} = 1/512\pi^2$.

For the proof of Theorem 6, we need a version of Lévy's lemma for GAP measures.

Theorem 7 [Teufel, Tumulka, Vogel 2023]

Let \mathscr{H} be a separable Hilbert space, let $f : \mathbb{S}(\mathscr{H}) \to \mathbb{R}$ be a function with Lipschitz constant η , let ρ be a density matrix on \mathscr{H} , and let $\varepsilon > 0$. Then

$$\mathsf{GAP}(\rho)\Big\{\psi\in\mathbb{S}(\mathscr{H}): \big|f(\psi)-\mathsf{GAP}(\rho)(f)\big|$$

where $C = 1/128\pi^2$.

"If the eigenvalues of ρ are small, then ${\rm GAP}(\rho)$ behaves like a very spread-out measure."

- If $\rho = \rho_R$, then $\|\rho\| = 1/d_R$, GAP $(\rho) = u_R$, and we recover the canonical typicality results up to worse constants and additional factors of d_a .
- In both our generalized canonical typicality theorems one needs that the eigenvalues of ρ are small.
- Equivalence of ensembles: If a and b interact weakly, then both $\rho_{\rm mc}$ and $\rho_{\rm can}$ in $\mathscr{H}_{\rm S} = \mathscr{H}_{\rm a} \otimes \mathscr{H}_{\rm b}$ lead to reduced density matrices close to a canonical density matrix for a, $\operatorname{tr}_{b} \rho_{\rm mc} \approx \rho_{\rm a,can} \approx \operatorname{tr}_{b} \rho_{\rm can}$; we can start from either $u_{\rm mc}$ or $\operatorname{GAP}(\rho_{\rm can})$ and obtain for both ensembles of ψ that $\rho_{\rm a}^{\psi}$ is nearly constant and nearly canonical.

Theorem 9 [Teufel, Tumulka, Vogel 2023]

Let $\varepsilon, \delta \in (0, 1)$, let $f : \mathbb{S}(\mathscr{H}_a) \to \mathbb{R}$ be any continuous (test) function, and let $d_b \ge \max\{4, d_a, 32 \| f \|_{\infty}^2 / \varepsilon^2 \delta\}$. Then there is p > 0 such that for every density matrix ρ on $\mathscr{H} = \mathscr{H}_a \otimes \mathscr{H}_b$ with tr $\rho^2 < p$,

$$\begin{split} \mathsf{GAP}(\rho) \times u_{\mathrm{ONB}} \Big\{ (\Psi, \mathcal{B}) \in \mathbb{S}(\mathscr{H}) \times \mathrm{ONB}(\mathscr{H}_b) : \\ \big| \mathrm{Born}_a^{\Psi, \mathcal{B}}(f) - \mathsf{GAP}(\mathsf{tr}_b \, \rho)(f) \big| < \varepsilon \Big\} \geq 1 - \delta \,. \end{split}$$

Remark: Weak convergence of measures $P_n \Rightarrow P$ is equivalent to $P_n(f) \rightarrow P(f)$ for every bounded continuous (test) function f. Here, f is automatically bounded because $\mathbb{S}(\mathscr{H}_a)$ is compact.

Theorem 8 [Teufel, Tumulka, Vogel 2023]

Suppose $d_a = \dim \mathscr{H}_a < \infty$ and \mathscr{H}_b is separable. Let ρ be a density matrix on $\mathscr{H} = \mathscr{H}_a \otimes \mathscr{H}_b$ with $\|\rho\| < 1/4$. Then for every $\varepsilon, T > 0$,

$$\mathsf{GAP}(\rho)\left\{\psi\in\mathbb{S}(\mathscr{H}):\frac{1}{T}\int_{0}^{T}\left\|\rho_{a}^{\psi_{t}}-\mathsf{tr}_{b}\,\rho_{t}\right\|_{\mathsf{tr}}^{2}\,dt<\varepsilon\right\}\geq1-\frac{28d_{a}^{3}\,\mathsf{tr}\,\rho^{2}}{\varepsilon}.$$

Thank you for your attention

Roderich Tumulka Canonical Typicality For Other Ensembles Than Micro-Canonical

イロト イボト イヨト イヨト

æ