Bohmian Trajectories as the Foundation of Quantum Mechanics and Quantum Field Theory

Roderich Tumulka
Eberhard Karls University, Tübingen (Germany)

EmQM 17 London, 26 October 2017

Happy 100-th birthday, David Bohm!

- In 1952, David Bohm solved the biggest of all problems in quantum mechanics,
- which is to provide an explanation of quantum mechanics.
- His theory is known as Bohmian mechanics, pilot-wave theory, de Broglie-Bohm theory, or the ontological interpretation.
- This theory makes a proposal for how the our world might work.
- It agrees with all empirical observations of quantum mechanics.
- It is widely under-appreciated.
- It achieves what was often (before and even after 1952) claimed impossible: To explain the rules of quantum mechanics through a coherent picture of microscopic reality.
- It is remarkably simple and elegant.
- It is probably the true theory of quantum reality.
- Compared to Bohmian mechanics, orthodox quantum mechanics appears quite "unprofessional" (John Bell) and "incoherent" (Albert Einstein).
- In fact, orthodox quantum mechanics appears like the narrative of a dream whose logic doesn't make sense any more once you are awake although it seemed completely natural while you were dreaming.
- According to Bohmian mechanics, electrons and other elementary particles are particles in the literal sense, i.e., they have a well-defined position $\boldsymbol{Q}_{j}(t) \in \mathbb{R}^{3}$ at all times t. They have trajectories.
- These trajectories are governed by Bohm's equation of motion (next slide).
- Given the claim that it was impossible to explain quantum mechanics, it is remarkable that something as simple as particle trajectories does the job.
- What went wrong in orthodox QM? Some variables were left out of consideration: the particle positions!

Laws of Bohmian mechanics

(1) Bohm's equation of motion

$$
\frac{d \boldsymbol{Q}_{j}}{d t}=\frac{\hbar}{m_{j}} \operatorname{Im} \frac{\psi^{*} \nabla_{j} \psi}{\psi^{*} \psi}\left(\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{N}\right)
$$

(2) The Schrödinger equation for ψ,

$$
i \hbar \frac{\partial \psi}{\partial t}=-\sum_{j} \frac{\hbar^{2}}{2 m_{j}} \nabla_{j}^{2} \psi+V \psi
$$

(3) The initial configuration $Q(0)=\left(\boldsymbol{Q}_{1}(0), \ldots, \boldsymbol{Q}_{N}(0)\right)$ is random with probability density

$$
\rho=\left|\psi_{0}\right|^{2} .
$$

It follows that at any time $t \in \mathbb{R}, Q(t)$ is random with density $\rho_{t}=\left|\psi_{t}\right|^{2}$ ("equivariance theorem").

Drawn by G. Bauer after Philippidis et al. [1979]
"This idea seems to me so natural and simple, to resolve the wave-particle dilemma in such a clear and ordinary way, that it is a great mystery to me that it was so generally ignored."

- Bohmian mechanics is clearly non-local.
- Bohmian mechanics avoids the problematical idea that the world consists only of wave function.
- It provides precision, clarity, and a clear ontology in space-time.
- It allows for an analysis of quantum measurements, thus replacing postulates of orthodox QM by theorems.

Extensions of Bohmian mechanics

- Particle creation
- Relativistic space-time

Particle creation in Bohmian mechanics

[Bell 1986; Dürr, Goldstein, Tumulka, Zanghì 2005]

Natural extension of Bohmian mechanics to particle creation:
$\Psi \in$ Fock space $\mathscr{F}=\bigoplus_{n=0}^{\infty} \mathscr{H}_{n}$,

(a)
(a)

(b)
\qquad
(b)

jumps (e.g., n-sector $\rightarrow(n+1)$ sector) occur in a stochastic way, with rates governed by a further equation of the theory.
configuration space of a variable number of particles
$\mathcal{Q}=\bigcup_{n=0}^{\infty} \mathbb{R}^{3 n}$

Jump rate formula

- Jump rate from q^{\prime} to $q \in \mathcal{Q}$:

$$
\sigma^{\psi}\left(q^{\prime} \rightarrow q\right)=\frac{\max \left\{0, \frac{2}{\hbar} \operatorname{Im}\langle\psi| P(q) H_{1} P\left(q^{\prime}\right)|\psi\rangle\right\}}{\left\langle\psi \mid P\left(q^{\prime}\right) \psi\right\rangle}
$$

- here, $H_{l}=$ interaction Hamiltonian, $H=H_{0}+H_{l}$, and
- $P(q)$ the configuration operators
- e.g., $P(q)=|q\rangle\langle q|$
- or generally, a POVM (positive-operator-valued measure) on configuration space
- Between jumps, Bohm's equation of motion applies.
- $|\psi|^{2}$ distribution $=\langle\psi| P(q)|\psi\rangle$ holds at every time t.

Essentially, if you have a Hilbert space \mathscr{H}, a state vector $\psi \in \mathscr{H}$, a Hamiltonian H, a configuration space \mathcal{Q}, and configuration operators $P(q)$, then we know how to set up Bohmian trajectories $Q(t)$.

An UV divergence problem

For example, consider a simplified model QFT:

- x-particles can emit and absorb y-particles.
- There is only 1 x -particle, and it is fixed at the origin. $\mathscr{H}=\mathscr{F}_{y}^{\text {bosonic }}$
- configuration space $\mathcal{Q}=\bigcup_{n=0}^{\infty} \mathbb{R}^{3 n}$

Original Hamiltonian in the particle-position representation:

$$
\begin{aligned}
\left(H_{\text {orig }} \psi\right)\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)= & -\frac{\hbar^{2}}{2 m_{y}} \sum_{j=1}^{n} \nabla_{\boldsymbol{y}_{j}}^{2} \psi\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right) \\
& +g \sqrt{n+1} \psi\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}, \mathbf{0}\right) \\
& +\frac{g}{\sqrt{n}} \sum_{j=1}^{n} \delta^{3}\left(\boldsymbol{y}_{j}\right) \psi\left(\boldsymbol{y}_{1} \ldots \widehat{\boldsymbol{y}}_{j} \ldots \boldsymbol{y}_{n}\right)
\end{aligned}
$$

is UV divergent. ($\quad=$ omit)

Well-defined, regularized version of H

UV cut-off $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$:

$$
\begin{aligned}
\left(H_{\text {cutoff }} \psi\right)\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)= & -\frac{\hbar^{2}}{2 m_{y}} \sum_{j=1}^{n} \nabla_{\boldsymbol{y}_{j}}^{2} \psi\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)+ \\
& +g \sqrt{n+1} \sum_{i=1}^{m} \int_{\mathbb{R}^{3}} d^{3} \boldsymbol{y} \varphi^{*}(\boldsymbol{y}) \psi\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}, \boldsymbol{y}\right)+ \\
& +\frac{g}{\sqrt{n}} \sum_{i=1}^{m} \sum_{j=1}^{n} \varphi\left(\boldsymbol{y}_{j}\right) \psi\left(\boldsymbol{y}_{1} \ldots \widehat{\boldsymbol{y}}_{j} \ldots \boldsymbol{y}_{n}\right)
\end{aligned}
$$

"smearing out" the x-particle with "charge distribution" $\varphi(\cdot)$

But then . . .

...emission and absorption occurs anywhere in a ball around the x-particle ($=$ in the support of

This UV problem can be solved!
[Teufel and Tumulka 2015; Lampart, Schmidt, Teufel, and Tumulka 2017]

Novel idea: Interior-boundary condition

2-particle sector
Here: boundary config $=$ where y-particle meets x-particle;
interior config $=$ one y-particle removed

Interior-boundary condition (IBC)

$$
\psi^{(n+1)}(\text { bdy })=(\text { const. }) \psi^{(n)}
$$

links two configurations connected by the creation or annihilation of a particle.
For example, with an x-particle at $\mathbf{0}$,

$$
\psi\left(y^{n}, \mathbf{0}\right)=\frac{g m_{y}}{2 \pi \hbar^{2} \sqrt{n+1}} \psi\left(y^{n}\right)
$$

with $y^{n}=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right)$.

Self-adjoint Hamiltonian, rigorously

$$
\begin{align*}
& \text { - IBC } \lim _{r \searrow 0} r \psi\left(y^{n}, r \omega\right)=\frac{g m_{y}}{2 \pi \hbar^{2} \sqrt{n+1}} \psi\left(y^{n}\right) \tag{1}\\
& \text { - } H_{I B C} \psi= \\
& H_{\text {free }} \psi+\frac{g \sqrt{n+1}}{4 \pi} \int_{\mathbb{S}^{2}} d^{2} \boldsymbol{\omega} \lim _{r \geq 0} \frac{\partial}{\partial r}\left(r \psi\left(y^{n}, r \boldsymbol{\omega}\right)\right) \tag{2}\\
& \\
& \\
& +\frac{g}{\sqrt{n}} \sum_{j=1}^{n} \delta^{3}\left(\boldsymbol{y}_{j}\right) \psi\left(y^{n} \backslash \boldsymbol{y}_{j}\right)
\end{align*}
$$

Theorem [Lampart, Schmidt, Teufel, Tumulka 2017]

On a suitable dense domain $\mathscr{D}_{I B C}$ of $\psi \mathrm{s}$ in \mathscr{H} satisfying the IBC (1), $H_{I B C}$ is well defined, self-adjoint, and positive. No UV divergence!

Bohmian particles:

- when $Q(t) \in \mathcal{Q}^{(n)}$ reaches $\boldsymbol{y}_{j}=\mathbf{0}$, it jumps to $\left(y^{n} \backslash \boldsymbol{y}_{j}\right) \in \mathcal{Q}^{(n-1)}$
- emission of new \mathbf{y}-particle at $\mathbf{0}$ at random time with random direction with a rate dictated by time reversal invariance.

Extensions of Bohmian mechanics: Relativistic space-time

Bohmian mechanics in relativistic space-time

- If a preferred foliation (= slicing) of space-time into spacelike hypersurfaces ("time foliation" \mathcal{F}) is permitted, then there is a simple, convincing analog of Bohmian mechanics, $\mathrm{BM}_{\mathcal{F}}$.
[Bohm and Hiley 1993 for flat foliations; Dürr, Goldstein, Münch-Berndl, Zanghì 1999 for curved foliations;
Tumulka 2001 for curved space-time]
- Without a time foliation, no version of Bohmian mechanics is known that would make predictions anywhere near quantum mechanics.

(And I have no hope that such a version can be found in the future.)
- To grant a time foliation (= preferred foliation) is against the spirit of relativity.
- But it is a real possibility that our world is like that.
- It doesn't mean relativity would be irrelevant:
- There is still a metric $g_{\mu \nu}$.
- The free Hamiltonian is still the Dirac operator.
- Formulas are still expressed with 4 -vector indices (j^{μ} etc.),
- Just there is also the vector n_{μ} normal to the time foliation.
- Still no superluminal signaling.
- The hypothesis of a time foliation provides a very simple explanation of the non-locality required by Bell's theorem.

A preferred foliation may be provided anyhow by the metric:

Simplest choice of time foliation \mathcal{F}

Let \mathcal{F} be the level sets of the function T : space-time $\rightarrow \mathbb{R}$, $T(x)=$ timelike-distance $(x$, big bang).
E.g., T (here-now) $=13.7$ billion years

Drawing: R. Penrose

Alternatively, \mathcal{F} might be defined in terms of the quantum state vector $\psi, \mathcal{F}=\mathcal{F}(\psi)$ [Dürr, Goldstein, Norsen, Struyve, Zanghì 2014]

Or, \mathcal{F} might be determined by an evolution law (possibly involving ψ) from an initial time leaf.

$B M_{\mathcal{F}}$ [Dürr et al. 1999]

Consider N particles. Suppose that, for every $\Sigma \in \mathcal{F}$, we have ψ_{Σ} on Σ^{N}. $Q(\Sigma)=\left(Q_{1} \cap \Sigma, \ldots, Q_{N} \cap \Sigma\right)=$ configuration on Σ
Equation of motion:
$\frac{d Q_{k}^{\mu}}{d \tau}=\operatorname{expression}[\psi(Q(\Sigma))]$

Example for N Dirac particles

 $\psi_{\Sigma}: \Sigma^{N} \rightarrow\left(\mathbb{C}^{4}\right)^{\otimes N}$. Equation of motion:$$
\begin{gathered}
\frac{d Q_{k}^{\mu}}{d \tau} \propto j_{k}^{\mu}(Q(\Sigma)) \\
j^{\mu_{1} \ldots \mu_{N}}=\bar{\psi}\left[\gamma^{\mu_{1}} \otimes \cdots \otimes \gamma^{\mu_{N}}\right] \psi, \\
j_{k}^{\mu_{k}}\left(q_{1} \ldots q_{N}\right)=j^{\mu_{1} \ldots \mu_{N}}\left(q_{1} \ldots q_{N}\right) n_{\mu_{1}}\left(q_{1}\right) \cdots(k \text {-th omitted }) \cdots n_{\mu_{N}}\left(q_{N}\right)
\end{gathered}
$$ with $n_{\mu}(x)=$ unit normal vector to Σ at $x \in \Sigma$.

Key facts about $\mathrm{BM}_{\mathcal{F}}$

Equivariance

Suppose initial configuration is $|\psi|^{2}$-distributed. Then the configuration of crossing points $Q(\Sigma)=\left(Q_{1} \cap \Sigma, \ldots, Q_{N} \cap \Sigma\right)$ is $\left|\psi_{\Sigma}\right|^{2}$-distributed (in the appropriate sense) on every $\Sigma \in \mathcal{F}$.

Predictions

The detected configuration is $\left|\psi_{\Sigma}\right|^{2}$-distributed on every spacelike Σ.

As a consequence,
\mathcal{F} is invisible, i.e., experimental results reveal no information about \mathcal{F}.

All empirical predictions of $\mathrm{BM}_{\mathcal{F}}$

 agree with the standard quantum formalism and the empirical facts.
Key facts about $\mathrm{BM}_{\mathcal{F}}$

Theorem [Lienert and Tumulka 2017]

If detectors are placed along any spacelike surface Σ, the joint distribution of detection events is $\left|\psi_{\Sigma}\right|^{2}$.

$\mathrm{BM}_{\mathcal{F}}$ is very robust:

- works for arbitrary foliation \mathcal{F}
- works even if the foliation has kinks [Struyve and Tumulka 2014]
- works even if the leaves of \mathcal{F} overlap [Struyve and Tumulka 2015]
- can be combined with the stochastic jumps for particle creation
- works also in curved space-time [Tumulka 2001]
- works still if space-time has singularities [Tumulka 2010]

Multi-time wave function $\phi\left(t_{1}, x_{1}, \ldots, t_{N}, x_{N}\right)$

as a generalization of the N-particle wave function $\psi\left(t, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)$ of non-relativistic quantum mechanics:

$$
\psi\left(t, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\phi\left(t, \boldsymbol{x}_{1}, \ldots, t, \boldsymbol{x}_{N}\right)
$$

$\psi_{\Sigma}\left(x_{1}, \ldots, x_{N}\right)=\phi\left(x_{1}, \ldots, x_{N}\right)$.
Intended: if detectors along Σ then prob distribution of outcomes $=\left|\psi_{\Sigma}\right|^{2}$

$$
\begin{gathered}
i \frac{\partial \psi}{\partial t}=H \psi \quad \text { vs. } \quad i \frac{\partial \phi}{\partial t_{i}}=H_{i} \phi \quad \forall i=1, \ldots, N \\
\sum_{i=1}^{N} H_{i}=H
\end{gathered}
$$

It's the covariant particle-position representation of the state vector. Closely related to the Tomonaga-Schwinger wave function, but simpler.

Multi-time wave function $\phi\left(t_{1}, x_{1}, \ldots, t_{N}, x_{N}\right)$

Consistency condition

$$
\left[i \frac{\partial}{\partial t_{i}}-H_{i}, i \frac{\partial}{\partial t_{j}}-H_{j}\right]=0 \quad \forall i \neq j
$$

[Dirac, Fock, Podolsky 1932; F. Bloch 1934]

- trivially satisfied for non-interacting particles
- interaction is a challenge, potentials violate consistency
- zero-range interactions possess consistent multi-time equations [Lienert 2015]
- interaction through emission and absorption of bosons possesses consistent multi-time equations [Petrat and Tumulka 2014]

Thank you for your attention

