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Happy 100-th birthday, David Bohm!
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@ In 1952, David Bohm solved the biggest of all problems in quantum
mechanics,

@ which is to provide an explanation of quantum mechanics.

His theory is known as Bohmian mechanics, pilot-wave theory, de
Broglie-Bohm theory, or the ontological interpretation.

This theory makes a proposal for how the our world might work.
It agrees with all empirical observations of quantum mechanics.

It is widely under-appreciated.

It achieves what was often (before and even after 1952) claimed
impossible: To explain the rules of quantum mechanics through a
coherent picture of microscopic reality.

@ It is remarkably simple and elegant.

@ It is probably the true theory of quantum reality.
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@ Compared to Bohmian mechanics, orthodox quantum mechanics
appears quite “unprofessional” (John Bell) and “incoherent” (Albert
Einstein).

@ In fact, orthodox quantum mechanics appears like the narrative of a
dream whose logic doesn’t make sense any more once you are awake
although it seemed completely natural while you were dreaming.

@ According to Bohmian mechanics, electrons and other elementary
particles are particles in the literal sense, i.e., they have a
well-defined position Q;(t) € R3 at all times t. They have
trajectories.

@ These trajectories are governed by Bohm's equation of motion (next
slide).
@ Given the claim that it was impossible to explain quantum

mechanics, it is remarkable that something as simple as particle
trajectories does the job.

@ What went wrong in orthodox QM? Some variables were left out of
consideration: the particle positions!
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Laws of Bohmian mechanics

@ Bohm's equation of motion

40, _ h 0V

dt  m; g

(Q1,-..,Qn)
@ The Schrodinger equation for ),

oy R,

@ The initial configuration Q(0) = (Q1(0),..., Qn(0)) is random with
probability density
p = lthol*.

It follows that at any time t € R, Q(t) is random with density p; = [1;|?
(“equivariance theorem").
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Drawn by G. Bauer after Philippidis et al. [1979]
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“This idea seems to me so natural and simple,
to resolve the wave—particle dilemma in such a
clear and ordinary way, that it is a great

mystery to me that it was so generally ignored.”

John S. Bell

(1928-1990)

-
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Bohmian mechanics is clearly non-local.

Bohmian mechanics avoids the problematical idea that the world
consists only of wave function.

It provides precision, clarity, and a clear ontology in space-time.

It allows for an analysis of quantum measurements, thus replacing
postulates of orthodox QM by theorems.

(]
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Extensions of Bohmian mechanics

@ Particle creation

@ Relativistic space-time
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Particle creation in Bohmian mechanics

[Bell 1986; Diirr, Goldstein, Tumulka, Zanghi 2005]

1 t

Natural extension of Bohmian
mechanics to particle creation:

WV € Fock space . = P 47, i \

n=0 '
(a) (b)

configuration space of a variable
number of particles

o0
0= U R3n

n=0

[

jumps (e.g., n-sector — (n + 1)- f‘Q("”

sector) occur in a stochastic way,

0(1+) ‘
with rates governed by a further J Q("u

equation of the theory.

(©) ()
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Jump rate formula

@ Jump rate from ¢’ to g € Q:

max{0, % Im (|P(q)H, P(q')|¥) }
(WIP(q') )

a¥(q' = q) =

@ here, H, = interaction Hamiltonian, H = Hy + H,, and
e P(q) the configuration operators
o eg., P(q) =lq){ql
o or generally, a POVM (positive-operator-valued measure) on
configuration space
@ Between jumps, Bohm's equation of motion applies.
e |1|? distribution = (10| P(q)|1) holds at every time t.

Essentially, if you have a Hilbert space .7, a state vector ¢ € JZ, a
Hamiltonian H, a configuration space Q, and configuration operators
P(q), then we know how to set up Bohmian trajectories Q(t).
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An UV divergence problem

For example, consider a simplified model QFT:
@ Xx-particles can emit and absorb y-particles.

@ There is only 1 x-particle, and it is fixed at the origin. 7 = G\yb°s°"'c

@ configuration space Q = U R3"
n=0

Original Hamiltonian in the particle-position representation:

+ gvn+19(y;...y,0)
+ 55;53(yj)w(y1mfjmyn)7

is UV divergent. (" = omit)
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Well-defined, regularized version of H

UV cut-off p € L2(R3):

J—
(chtoffw)(yl ©o yn) = 7% va,/?/)(h 0o yn) +
yj:1
+gvn+1Z/de3y<p*(y)w(y Ym¥) +
=il
w(y)zb(y Yi---Yn)

“smearing out” the x-particle
with “charge distribution” (-)
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But then ...

...emission and absorption occurs '
anywhere in a ball around the
x-particle (= in the support of

o= ) P

This UV problem can be solved! )

[Teufel and Tumulka 2015; Lampart, Schmidt, Teufel, and Tumulka 2017]
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Novel idea: Interior-boundary condition

2—particle sector

Here: boundary config = where y-particle 1-particle sector

meets x-particle; y //x

interior config = one y-particle removed \

X

Interior—boundary condition (IBC)

(") (bdy) = (const.) ("

links two configurations connected by the creation or annihilation of a
particle.
For example, with an x-particle at 0,

n _ gmy n

Wlth yn:(ylv'“;yn)'
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Self-adjoint Hamiltonian, rigorously

H n gm n
e IBC r|l\% rp(y", rw) = Wf:ﬁ V(y") (1)
° HIBCL/) = Hfreew + M lim — (”/J(y ))
4
253 YY"\ y)) 2

Theorem [Lampart, Schmidt, Teufel, Tumulka 2017]

On a suitable dense domain Zjg¢ of s in ## satisfying the IBC (1),
Higc is well defined, self-adjoint, and positive. No UV divergence!

| \

Bohmian particles

o when Q(t) € Q" reaches y; =0, it jumps to (y"\y;) € Q(n—1)
@ emission of new y-particle at 0 at random time with random
direction with a rate dictated by time reversal invariance.

v
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Extensions of Bohmian mechanics: Relativistic space-time
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Bohmian mechanics in relativistic space-time

@ If a preferred foliation (= slicing) of
space-time into spacelike
hypersurfaces (“time foliation” F)
is permitted, then there is a simple,
convincing analog of Bohmian
mechanics, BM ~. R e
[Bohm and Hiley 1993 for flat foliations; \\
Diirr, Goldstein, Miinch-Berndl, Zanghi -

1999 for curved foliations; T
Tumulka 2001 for curved space-time]

o Without a time foliation, no version
of Bohmian mechanics is known
that would make predictions
anywhere near quantum mechanics.
(And | have no hope that such a
version can be found in the future.)
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e To grant a time foliation (= preferred foliation) is against the spirit
of relativity.
@ But it is a real possibility that our world is like that.

@ It doesn't mean relativity would be irrelevant:

o There is still a metric gy,

o The free Hamiltonian is still the Dirac operator.

o Formulas are still expressed with 4-vector indices (j* etc.),
o Just there is also the vector n, normal to the time foliation.

Still no superluminal signaling.

The hypothesis of a time foliation provides a very simple explanation
of the non-locality required by Bell’s theorem.
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A preferred foliation may be provided anyhow by the metric:

Simplest choice of time foliation F

Let F be the level sets of the function
T : space-time — R,
T (x) = timelike-distance(x, big bang).

E.g., T(here-now) = 13.7 billion years

Drawing: R. Penrose

Alternatively, 7 might be defined in terms of the quantum state vector
w, F = f(¢) [Diirr, Goldstein, Norsen, Struyve, Zanghi 2014]

Or, F might be determined by an evolution law (possibly involving )
from an initial time leaf.
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BM £ [Diirr et al. 1999]

Consider N particles. Suppose that,
for every ¥ € F, we have 15 on V.
R(X)=(@QNX,...,QuNX) = con-
figuration on ¥
Equation of motion:

M

Q ,
TTk = expression [1/)(0(2))}

space

Example for N Dirac particles

Py : TNV — (C*)®N. Equation of motion:

dQy;
dr

o i (Q(X)),

j#lu»H«N — a[,}/m R -® ,Y,ulv]w7
J(qu...qn) = j" " (qy . .. qn) Ny (q1) - - - (k-th omitted) - - - n,, (qn)

with n,(x) = unit normal vector to X at x € ¥.
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Key facts about BM £

Equivariance

Suppose initial configuration is [t)|>-distributed. Then the configuration
of crossing points Q(X) = (@1 NX,...,QnNX) is |1s|?-distributed (in
the appropriate sense) on every ¥ € F.

Predictions

The detected configuration is |z |>-distributed on every spacelike ¥.

As a consequence,
F is invisible, i.e., experimental results reveal no information about F.

All empirical predictions of BM x

agree with the standard quantum formalism and the empirical facts.
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Key facts about BM £

Theorem [Lienert and Tumulka 2017]

If detectors are placed along any spacelike surface X, the joint
distribution of detection events is |1 |*.

BM £ is very robust:

@ works for arbitrary foliation F

works even if the foliation has kinks [Struyve and Tumulka 2014]
works even if the leaves of F overlap [Struyve and Tumulka 2015]
can be combined with the stochastic jumps for particle creation

works also in curved space-time [Tumulka 2001]

works still if space-time has singularities [Tumulka 2010]
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Multi-time wave function ¢(t1, X1, .- ., ty, Xn)

as a generalization of the N-particle wave function ¥(t, x1,...,xy) of
non-relativistic quantum mechanics:

1/}(th17 s 7XN) = ¢(t»X17 teey taxN)
Ys (1, oxn) = G051, XN).
Intended: if detectors along X then prob distribution of outcomes = |¢5|?
oY 00 .
IE = Hy s /a—ti—H,¢ Vi=1,....,N
N

It's the covariant particle-position representation of the state vector.
Closely related to the Tomonaga-Schwinger wave function, but simpler.
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Multi-time wave function ¢(t1, X1, .- ., ty, Xn)

Consistency condition

[Dirac, Fock, Podolsky 1932; F. Bloch 1934]
@ trivially satisfied for non-interacting particles
@ interaction is a challenge, potentials violate consistency

@ zero-range interactions possess consistent multi-time equations
[Lienert 2015]

@ interaction through emission and absorption of bosons possesses
consistent multi-time equations [Petrat and Tumulka 2014]
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Thank you for your attention
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