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Happy 100-th birthday, David Bohm!
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In 1952, David Bohm solved the biggest of all problems in quantum
mechanics,

which is to provide an explanation of quantum mechanics.

His theory is known as Bohmian mechanics, pilot-wave theory, de
Broglie–Bohm theory, or the ontological interpretation.

This theory makes a proposal for how the our world might work.

It agrees with all empirical observations of quantum mechanics.

It is widely under-appreciated.

It achieves what was often (before and even after 1952) claimed
impossible: To explain the rules of quantum mechanics through a
coherent picture of microscopic reality.

It is remarkably simple and elegant.

It is probably the true theory of quantum reality.
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Compared to Bohmian mechanics, orthodox quantum mechanics
appears quite “unprofessional” (John Bell) and “incoherent” (Albert
Einstein).

In fact, orthodox quantum mechanics appears like the narrative of a
dream whose logic doesn’t make sense any more once you are awake
although it seemed completely natural while you were dreaming.

According to Bohmian mechanics, electrons and other elementary
particles are particles in the literal sense, i.e., they have a
well-defined position Q j(t) ∈ R3 at all times t. They have
trajectories.

These trajectories are governed by Bohm’s equation of motion (next
slide).

Given the claim that it was impossible to explain quantum
mechanics, it is remarkable that something as simple as particle
trajectories does the job.

What went wrong in orthodox QM? Some variables were left out of
consideration: the particle positions!
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Laws of Bohmian mechanics

1 Bohm’s equation of motion

dQ j

dt
=

~
mj

Im
ψ∗∇jψ

ψ∗ψ
(Q1, . . . ,QN)

2 The Schrödinger equation for ψ,

i~
∂ψ

∂t
= −

∑
j

~2

2mj
∇2

j ψ + Vψ

3 The initial configuration Q(0) = (Q1(0), . . . ,QN(0)) is random with
probability density

ρ = |ψ0|2 .

It follows that at any time t ∈ R, Q(t) is random with density ρt = |ψt |2
(“equivariance theorem”).
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Drawn by G. Bauer after Philippidis et al. [1979]
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“This idea seems to me so natural and simple,
to resolve the wave–particle dilemma in such a
clear and ordinary way, that it is a great
mystery to me that it was so generally ignored.”

John S. Bell
(1928–1990)

Roderich Tumulka Bohmian Trajectories



Bohmian mechanics is clearly non-local.

Bohmian mechanics avoids the problematical idea that the world
consists only of wave function.

It provides precision, clarity, and a clear ontology in space-time.

It allows for an analysis of quantum measurements, thus replacing
postulates of orthodox QM by theorems.
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Extensions of Bohmian mechanics

Particle creation

Relativistic space-time
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Particle creation in Bohmian mechanics

[Bell 1986; Dürr, Goldstein, Tumulka, Zangh̀ı 2005]

Natural extension of Bohmian
mechanics to particle creation:

Ψ ∈ Fock space F =
∞⊕
n=0

Hn,

configuration space of a variable
number of particles

Q =
∞⋃
n=0

R3n

jumps (e.g., n-sector → (n + 1)-
sector) occur in a stochastic way,
with rates governed by a further
equation of the theory.

t

x

(a) (b)

t

x

Q(t !)

Q(t +)2

Q(t !)

1Q(t +)
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Jump rate formula

Jump rate from q′ to q ∈ Q:

σψ(q′ → q) =
max

{
0, 2

~ Im 〈ψ|P(q)HIP(q′)|ψ〉
}

〈ψ|P(q′)ψ〉

here, HI = interaction Hamiltonian, H = H0 + HI , and

P(q) the configuration operators

e.g., P(q) = |q〉〈q|
or generally, a POVM (positive-operator-valued measure) on
configuration space

Between jumps, Bohm’s equation of motion applies.

|ψ|2 distribution = 〈ψ|P(q)|ψ〉 holds at every time t.

Essentially, if you have a Hilbert space H , a state vector ψ ∈H , a
Hamiltonian H, a configuration space Q, and configuration operators
P(q), then we know how to set up Bohmian trajectories Q(t).
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An UV divergence problem

For example, consider a simplified model QFT:

x-particles can emit and absorb y-particles.

There is only 1 x-particle, and it is fixed at the origin. H = F bosonic
y

configuration space Q =
∞⋃
n=0

R3n

Original Hamiltonian in the particle-position representation:

(Horigψ)(y 1 . . . yn) = − ~2

2my

n∑
j=1

∇2
y j
ψ(y 1 . . . yn)

+ g
√
n + 1 ψ(y 1 . . . yn, 0)

+
g√
n

n∑
j=1

δ3(y j)ψ(y 1 . . . ŷ j . . . yn) ,

is UV divergent. (̂ = omit)
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Well-defined, regularized version of H

UV cut-off ϕ ∈ L2(R3):

(Hcutoffψ)(y 1 . . . yn) = − ~2

2my

n∑
j=1

∇2
y j
ψ(y 1 . . . yn) +

+ g
√
n + 1

m∑
i=1

∫
R3

d3y ϕ∗(y)ψ
(
y 1 . . . yn, y

)
+

+
g√
n

m∑
i=1

n∑
j=1

ϕ(y j)ψ
(
y 1 . . . ŷ j . . . yn

)

“smearing out” the x-particle
with “charge distribution” ϕ(·)
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But then . . .

. . . emission and absorption occurs
anywhere in a ball around the
x-particle (= in the support of

ϕ = ) x

t

This UV problem can be solved!

[Teufel and Tumulka 2015; Lampart, Schmidt, Teufel, and Tumulka 2017]
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Novel idea: Interior-boundary condition

Here: boundary config = where y-particle
meets x-particle;
interior config = one y-particle removed

1−particle sector

x

x

y

2−particle sector

Interior–boundary condition (IBC)

ψ(n+1)(bdy) = (const.) ψ(n)

links two configurations connected by the creation or annihilation of a
particle.
For example, with an x-particle at 0,

ψ(yn, 0) =
g my

2π~2
√
n + 1

ψ(yn) .

with yn = (y 1, . . . , yn).
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Self-adjoint Hamiltonian, rigorously

IBC lim
r↘0

rψ(yn, rω) =
g my

2π~2
√
n + 1

ψ(yn) (1)

HIBCψ = Hfreeψ +
g
√
n + 1

4π

∫
S2

d2ω lim
r↘0

∂

∂r

(
rψ(yn, rω)

)
+

g√
n

n∑
j=1

δ3(y j)ψ(yn \ y j) (2)

Theorem [Lampart, Schmidt, Teufel, Tumulka 2017]

On a suitable dense domain DIBC of ψs in H satisfying the IBC (1),
HIBC is well defined, self-adjoint, and positive. No UV divergence!

Bohmian particles:

when Q(t) ∈ Q(n) reaches y j = 0, it jumps to (yn \ y j) ∈ Q(n−1)

emission of new y-particle at 0 at random time with random
direction with a rate dictated by time reversal invariance.
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Extensions of Bohmian mechanics: Relativistic space-time
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Bohmian mechanics in relativistic space-time

If a preferred foliation (= slicing) of
space-time into spacelike
hypersurfaces (“time foliation” F)
is permitted, then there is a simple,
convincing analog of Bohmian
mechanics, BMF .
[Bohm and Hiley 1993 for flat foliations;
Dürr, Goldstein, Münch-Berndl, Zangh̀ı
1999 for curved foliations;
Tumulka 2001 for curved space-time]

Without a time foliation, no version
of Bohmian mechanics is known
that would make predictions
anywhere near quantum mechanics.
(And I have no hope that such a
version can be found in the future.)
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To grant a time foliation (= preferred foliation) is against the spirit
of relativity.

But it is a real possibility that our world is like that.

It doesn’t mean relativity would be irrelevant:

There is still a metric gµν .
The free Hamiltonian is still the Dirac operator.
Formulas are still expressed with 4-vector indices (jµ etc.),
Just there is also the vector nµ normal to the time foliation.

Still no superluminal signaling.

The hypothesis of a time foliation provides a very simple explanation
of the non-locality required by Bell’s theorem.
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A preferred foliation may be provided anyhow by the metric:

Simplest choice of time foliation F

Drawing: R. Penrose

Let F be the level sets of the function
T : space-time→ R ,
T (x) = timelike-distance(x , big bang).

E.g., T (here-now) = 13.7 billion years

Alternatively, F might be defined in terms of the quantum state vector
ψ, F = F(ψ) [Dürr, Goldstein, Norsen, Struyve, Zangh̀ı 2014]

Or, F might be determined by an evolution law (possibly involving ψ)
from an initial time leaf.

Roderich Tumulka Bohmian Trajectories



BMF [Dürr et al. 1999]

Consider N particles. Suppose that,
for every Σ ∈ F , we have ψΣ on ΣN .
Q(Σ) = (Q1∩Σ, . . . ,QN ∩Σ) = con-
figuration on Σ
Equation of motion:

dQµ
k

dτ
= expression

[
ψ
(
Q(Σ)

)]
Example for N Dirac particles

ψΣ : ΣN → (C4)⊗N . Equation of motion:

dQµ
k

dτ
∝ jµk (Q(Σ)),

jµ1...µN = ψ[γµ1 ⊗ · · · ⊗ γµN ]ψ,

jµk

k (q1 . . . qN) = jµ1...µN (q1 . . . qN) nµ1 (q1) · · · (k-th omitted) · · · nµN
(qN)

with nµ(x) = unit normal vector to Σ at x ∈ Σ.
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Key facts about BMF

Equivariance

Suppose initial configuration is |ψ|2-distributed. Then the configuration
of crossing points Q(Σ) = (Q1 ∩ Σ, . . . ,QN ∩ Σ) is |ψΣ|2-distributed (in
the appropriate sense) on every Σ ∈ F .

Predictions

The detected configuration is |ψΣ|2-distributed on every spacelike Σ.

As a consequence,

F is invisible, i.e., experimental results reveal no information about F .

All empirical predictions of BMF

agree with the standard quantum formalism and the empirical facts.
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Key facts about BMF

Theorem [Lienert and Tumulka 2017]

If detectors are placed along any spacelike surface Σ, the joint
distribution of detection events is |ψΣ|2.

BMF is very robust:

works for arbitrary foliation F
works even if the foliation has kinks [Struyve and Tumulka 2014]

works even if the leaves of F overlap [Struyve and Tumulka 2015]

can be combined with the stochastic jumps for particle creation

works also in curved space-time [Tumulka 2001]

works still if space-time has singularities [Tumulka 2010]
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Multi-time wave function φ(t1, x1, . . . , tN , xN)

as a generalization of the N-particle wave function ψ(t, x1, . . . , xN) of
non-relativistic quantum mechanics:

ψ(t, x1, . . . , xN) = φ(t, x1, . . . , t, xN)

ψΣ(x1, . . . , xN) = φ(x1, . . . , xN).
Intended: if detectors along Σ then prob distribution of outcomes = |ψΣ|2

i
∂ψ

∂t
= Hψ vs. i

∂φ

∂ti
= Hiφ ∀i = 1, . . . ,N

N∑
i=1

Hi = H

It’s the covariant particle-position representation of the state vector.
Closely related to the Tomonaga-Schwinger wave function, but simpler.
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Multi-time wave function φ(t1, x1, . . . , tN , xN)

Consistency condition[
i
∂

∂ti
− Hi , i

∂

∂tj
− Hj

]
= 0 ∀i 6= j

[Dirac, Fock, Podolsky 1932; F. Bloch 1934]

trivially satisfied for non-interacting particles

interaction is a challenge, potentials violate consistency

zero-range interactions possess consistent multi-time equations
[Lienert 2015]

interaction through emission and absorption of bosons possesses
consistent multi-time equations [Petrat and Tumulka 2014]
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Thank you for your attention
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